Aplicabilidad de modelos predictivos de falla renal en enfermedad renal crónica: una revisión de alcance

Autores/as

  • Yessica Giraldo Castrillon Universidad CES
  • Catalina Arango Universidad CES
  • Carlos Federico Molina Universidad CES
  • Angela Maria Segura Universidad CES

DOI:

https://doi.org/10.21615/cesmedicina.6987

Palabras clave:

enfermedad renal crónica terminal, modelo predictivo, validez externa, usabilidad, toma de decisiones clínicas

Resumen

Introducción: la identificación de los pacientes con mayor riesgo de progresar a falla renal es fundamental para la planeación del tratamiento en la enfermedad renal crónica, pero no ha podido llevarse a cabo consistentemente. Los modelos de predicción podrían ser una herramienta útil, sin embargo, su usabilidad en la Enfermedad Renal Crónica es limitada hasta ahora y no se comprenden muy bien las barreras y limitaciones. Métodos: se desarrolló una revisión de alcance de la literatura disponible sobre modelos predictivos de falla renal o reglas de pronóstico en pacientes con Enfermedad Renal Crónica. Las búsquedas se realizaron sistemáticamente en Cochrane, Pubmed y Embase. Se realizó una revisión ciega e independiente por dos evaluadores para identificar estudios que informaran sobre el desarrollo, la validación o la evaluación del impacto de un modelo construido para predecir la progresión al estadio avanzado de la enfermedad renal crónica. Se realizó una evaluación crítica de la calidad de la evidencia proporcionada con el sistema GRADE (Grading of Recommendations Assessment, Development and Evaluation). Resultados: de 1279 artículos encontrados, fueron incluidos 19 estudios para la síntesis cualitativa final. La mayoría de los estudios eran primarios, con diseños observacionales retrospectivos y unos pocos correspondieron a revisiones sistemáticas. No se encontraron guías de práctica clínica. La síntesis cualitativa evidenció gran heterogeneidad en el desarrollo de los modelos, así como en el reporte de las medidas de desempeño global, la validez interna y la falta de validez externa en la mayoría de los estudios. La calificación de la evidencia arrojó una calidad global baja, con inconsistencia entre los estudios e importantes limitaciones metodológicas. Conclusiones: la mayoría de los modelos predictivos disponibles, no han sido adecuadamente validados y, por tanto, se consideran de uso limitado para evaluar el pronóstico individual del paciente con enfermedad renal crónica. Por lo tanto, se requieren esfuerzos adicionales para centrar el desarrollo e implementación de modelos predictivos en la validez externa y la usabilidad y disminuir la brecha entre la generación, la síntesis de evidencia y la toma de decisiones en el ámbito del cuidado del paciente.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Yessica Giraldo Castrillon, Universidad CES

Médica y cirujana, Universidad de Antioquia. Magíster en Epidemiología Clínica, Universidad de Antioquia. Candidata a Doctora en Epidemiología y Bioestadística de la Escuela de Graduados, Universidad CES. Docente/Investigadora Unidad de Gestión de Investigación e Innovación en salud, Facultad de Medicina, Universidad CES, Medellín, Colombia. 

Catalina Arango, Universidad CES

Nutricionista, Universidad de Antioquia. Candidata a Doctora en Epidemiología, Universidad de Antioquia. Docente, División de Salud Pública, Facultad de Medicina, Universidad CES, Medellín, Colombia.

Carlos Federico Molina, Universidad CES

Médico y cirujano, Universidad de Antioquia. Toxicólogo, Universidad de Antioquia. Doctor en Epidemiología, Universidad de Antioquia. Docente Instituto Tecnológico de Medellín. Docente División de Salud Pública, Facultad de Medicina, Universidad CES, Medellín, Colombia.

Angela Maria Segura, Universidad CES

Estadística, Universidad de Antioquia. Magíster Epidemiología FNSP, Universidad de Antioquia. Doctora en Epidemiología, Universidad de Antioquia. Directora Escuela de Graduados, Universidad CES, Medellín, Colombia.

Referencias bibliográficas

Fung E. Kurella Tamura M. Epidemiology and Public Health Concerns of CKD in Older Adults. Advances in Chronic Kidney Disease. 23(1).2016: 8-11.

Rhee CM. Kovesdy C. Spotlight on CKD deaths-increasing mortality worldwide. Lancet. 2015; 385: 117–171.

US Renal Data System. USRDS 2019 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2019.

Tangri N. Georgios DK. Lesley AI. Griffith J, et al. Risk Prediction Models for Patients With Chronic Kidney Disease. A Systematic Review. Ann Intern Med 2013; 158: 596-603.

Martins D, et al. Kidney Disease in Disadvantaged Populations. Hindawi Publishing Corporation International Journal of Nephrology 2012.

Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007; 298: 2038–2047.

Lozano R, N. M. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380: 2095–128.

Moons K. Royston P. Vergouwe Y, et al. Prognosis and prognostic research: what, why, and how? BMJ 2009; 338: 1317-1320.

Advances in Chronic Kidney Disease, Vol 23, No 1 (January), 2016: pp 8-11.

http://epistemicos.blogspot.com/2010/01/que-es-la-prediccion-cientifica.html is licensed under a Creative Commons Atribución 3.0 Unported License.

Shuttleworth M. Prediction in research. Explorable: Think outside the box. Sparta: By Explorable.com. [Acceso 2 de agosto de 2022]. https://explorable.com/es/prediction.

Hipocrates. On airs, waters, and places. In: Adams F, ed. 1 The genuine works of Hippocrates. Baltimore: Wilkins and Wilkins, 1939.

Oliver MJ, Quinn RR, Garg AX, Kim SJ, Wald R, Paterson JM. Likelihood of starting dialysis after incident fistula creation. Clin J Am Soc Nephrol. 2012; 7: 466-71.

Fletcher RH. Fletcher SW. Clinical Epidemiology: The essentials. Philadelphia: Lippincott Williams & Wilkins. 4° ed).

Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowsk N, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology. 2010; 21: 128-38.

Frank E. Harrell, Jr. Regression Modeling Strategies With Applications to Linear Models, Logistic Regression, and Survival Analysis. New York: Springer. 1st edition 2001.

ESteyerberg EW. Clinical Prediction Models. 1° ed. Bethesda-EU: Springer; 2009. P. 497.

Van der Velde M, Matsushita K, Coresh J, et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int 2011; 79: 1341–1352.

Guía Metodológica para el Observatorio de Salud Cardiovascular, Diabetes y Enfermedad Renal Crónica –OCADER- Colombia. Bogotá D.C. Colombia: Ministerio de Salud y Protección Social. 2013. Disponible en: www.minsalud.gov.co

Levey AS, Stevens LA, Coresh J. Conceptual model of CKD: applications and implications. Am J Kidney Dis 2009; 53: S4–16.

KDIGO AKI Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney inter., Suppl. 2012; 2: 1–138.

Kidney disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney inter., Suppl. 2013; 3: 1–150.

National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002; 39: S1–266.

Aromataris E, Munn Z (Editors). JBI Manual for Evidence Synthesis. JBI, 2020. Available from https://synthesismanual.jbi.global. https://doi.org/10.46658/JBIMES-20-01

Aslam S. Emmanuel P. Indian J Sex Transm Dis AIDS. 2010; 31(1): 47–50. DOI: 10.4103/0253-7184.69003.

Harrel FE. Kerry l. Daniel B. Mark. Tutorial in biostatistics multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in medicine 1996; 15: 361-387.

Justin BE. Andre P, et al. Risk Models to Predict Chronic Kidney Disease and Its Progression: A Systematic Review. PLOS Medicine 2012; 9:1-18.

R. Jaeschke, G.H. Guyatt, P. Dellinger, H. Schünemann, M.M. Levy, R. Kunz, S. Norris, J. Bion. Use of GRADE grid to reach decisions on clinical practice guidelines when consensus is elusive. BMJ. 2008; 337: a774.

Tangri N. Lesley A. Griffith SJ, et al. A Predictive Model for Progression of Chronic Kidney Disease to Kidney Failure. JAMA 2011; 305(15): 1553-1559.

Morgan E. Grams, Liang Li, Tom H. Greene, et al. Estimating time to ESRD using kidney failure risk equations: results from the African American Study of Kidney Disease and Hypertension (AASK). 2015.

Turin TC. Coresh J. Tonelli M, et al. Short-term change in kidney function and risk of end-stage renal disease. Nephrology Dialysis Transplantation 2012; 0: 1–9.

Onuigbo MA, Onuigbo NT. Variability in CKD stage in outpatients followed in two large renal clinics: implications for CKD trials and the status of current knowledge of patterns of CKD to ESRD progression. Int Urol Nephrol 2012; 44: 1589-1590.

Mafham M. Staplin N. Emberson J. Prognostic utility of estimated albumin excretion rate in chronic kidney disease: results from the Study of Heart and Renal Protection. Oxford University Press on behalf of ERA-EDTA. 2017. pubs:671507. UUID: uuid:74b18c13-7558-4876-8aba-20973064d428.

Lim CC, Chee ML, Cheng C-Y, Kwek JL, Foo M, Wong TY, et al. Simplified end-stage renal failure risk prediction model for the low-risk general population with chronic kidney disease. PLoS ONE. 2019; 14(2): e0212590. https://doi.org/10.1371/journal.pone.0212590

Toyama T, Kasama S, Sato M, Sano H, Ueda T, Sasaki T, Nakahara T, Higuchi T, Tsushima Y, Kurabayashi M. Most Important Prognostic Values to Predict Major Adverse Cardiovascular, Cerebrovascular, and Renal Events in Patients with Chronic Kidney Disease Including Hemodialysis for 2 Years. Cardiology. 2019; 142:14–23. https://doi.org/10.1159/0004963302019

Liu SY, Huang P, Zhang N. Efficacy and safety of the Fu-Zheng-Qu-Zhuo method on retarding the progress of chronic kidney disease (stage 3–4): a systematic review and meta-analysis. Annals of Translational Medicine. 2019 Mar;7(6).

Ramspek CL, de Jong Y, Dekker FW, van Diepen M. Towards the best kidney failure prediction tool: a systematic review and selection aid. Nephrology Dialysis Transplantation. 2020 Sep;35(9):1527-38.

Ren Q, Chen D, Liu X, Yang R, Yuan L, Ding M, Zhang N. Derivation and Validation of a Prediction Model of End-Stage Renal Disease in Patients With Type 2 Diabetes Based on a Systematic Review and Meta-analysis. Frontiers in endocrinology. 2022;13.

Bhachu HK, Fenton A, Cockwell P, Aiyegbusi O, Kyte D, Calvert M. Use of the kidney failure risk equation to inform clinical care of patients with chronic kidney disease: a mixed-methods systematic review. BMJ open. 2022 Jan 1;12(1): e055572.

Van Rijn MH, van de Luijtgaarden M, van Zuilen AD, Blankestijn PJ, Wetzels JF, Debray TP, van den Brand JA. Prognostic models for chronic kidney disease: a systematic review and external validation. Nephrology Dialysis Transplantation. 2021 Oct;36(10):1837-50.23.

Zhao J, Zhang Y, Qiu J, Zhang X, Wei F, Feng J, Chen C, Zhang K, Feng S, Li WD. An early prediction model for chronic kidney disease. Scientific reports. 2022 Feb 17;12(1):1-9.

Weiner DE, Tighiouart H, Elsayed EF, Griffith JL, Salem DN, Levey AS, et al. The Framingham Predictive Instrument in Chronic Kidney Disease. J Am Coll Cardiol. 2007; 50 (3): 217–24.

Rucci P, Mandreoli M, Gibertoni D, Zuccala A, Fantini MP, Lenzi J, Santoro A. A clinical stratification tool for chronic kidney disease progression rate based on classification tree analysis. Nephrol Dial Transplant. 2014;29(3):603–10. https://doi.org/10.1093/ndt/gft444 Epub 2013/11/30. PubMed PMID: 24286974.

Morgan E Grams, Liang Li, Tom H Greene, Adrienne Tin, Yingying Sang, W H Linda Kao, Michael S Lipkowitz. Estimating time to ESRD using kidney failure risk equations: results from the African American Study of Kidney Disease and Hypertension (AASK). Am J Kidney Dis. 2015; 65(3):394-402. doi: 10.1053/j.ajkd.2014.07.026. Epub 2014 Oct 14.

Whaley-Connell AT, Kurella Tamura M, Jurkovitz CT, Kosiborod M, McCullough PA. Advances in CKD detection and determination of prognosis: executive summary of the National Kidney Foundation-Kidney Early Evaluation Program (KEEP) 2012 annual data report. American Journal of Kidney Diseases: the Official Journal of the National Kidney Foundation. 2013 Apr;61(4 Suppl 2): S1-3. DOI: 10.1053/j.ajkd.2013.01.006. PMID: 23507265; PMCID: PMC3608929.

Kaushal A, Naimark D, Tangri N. Use of the kidney failure risk equation to reduce uncertainty in predicting time to ESRD. Am J Kidney Dis. 2015;65(3):369–71.

Peeters MJ, Van Zuilen AD, Van den Brand JA, Bots ML, Blankestijn PJ, Wetzels JF. Validation of the kidney failure risk equation in European CKD patients. Nephrol Dial Transplant 2013; 28: 1773-1779.

Chukwukadibia MA, Agbasi ON. Chronic kidney disease prediction is an inexact science: The concept of “progressors” and “nonprogressors”. World J Nephrol. 2014; 3(3): 31-49.

Walser M, Drew HH, LaFrance ND. Reciprocal creatinine slopes often give erroneous estimates of the progression of chronic renal failure. Kidney Int. 1989; 27: S81-S85.

Altman DG, Vergouwe Y, Royston P, Moons K. Prognosis and prognostic research: validating a prognostic model. BMJ. 2009; 338: b605.

Moons K, Altman DG, Vergouwe Y, Royston P. Prognosis, and prognostic research: application and impact of prognostic models in clinical practice. BMJ. 2009; 338: b606.

Karel G.M. Douglas G.A. Johannes BR, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): Explanation and Elaboration. Annals of Internal Medicine; 2015. 162(1): W1-W73.

Descargas

Publicado

16-11-2022

Cómo citar

Giraldo Castrillon, Y., Arango, C., Molina, C. F., & Segura, A. M. (2022). Aplicabilidad de modelos predictivos de falla renal en enfermedad renal crónica: una revisión de alcance. CES Medicina, 36(3), 69–85. https://doi.org/10.21615/cesmedicina.6987

Número

Sección

Artículos de revisión