Papel de los microARN en la patogénesis del cáncer de próstata

Autores/as

DOI:

https://doi.org/10.21615/cesmedicina.35.1.3

Palabras clave:

MicroARN, Cáncer de prostata, Biomarcadores, Terapia genética

Resumen

El cáncer de próstata es una enfermedad prevalente, generadora de gran morbimortalidad y reportada como la quinta causa de muerte a nivel mundial. Según las estimaciones de GLOBOCAN (Global Cancer Observatory por sus siglas en inglés) para el año 2018 se reportaron 1 276 106 casos nuevos a nivel mundial. Recientemente, surgen los microARN como una posible estrategia futura como biomarcadores, tanto para el diagnóstico como para el tratamiento de la enfermedad. Los microARN son pequeñas moléculas de ARN que cumplen un papel en la regulación de la expresión génica, por lo que la expresión variable de estas moléculas tiene una función importante en la patogénesis del cáncer de próstata. La revisión de la literatura en diferentes bases de datos permitió evidenciar su papel en la patogénesis del cáncer de próstata. Se sugiere que la expresión diferencial de estas moléculas biológicas podría ser de utilidad en la práctica clínica. En Colombia se encuentra en investigación su utilidad en diferentes enfermedades, por lo cual esta revisión de tema podría contribuir a futuras investigaciones.

Biografía del autor/a

María José Fernández Turizo, Universidad CES

Facultad de Medicina - Estudiante

María Camila Galindo Quintero, Universidad CES

Facultad de Medicina - Estudiante

Guillermo Andrés Mosquera Lizcano, Universidad CES

Facultad de Medicina - Estudiante

Oriana Echavarría Cano, Universidad CES

Facultad de Medicina - Estudiante

Yuliana Marcela Gallo García, Universidad CES

Faculdad de Medicina - Docente Ciencias Básicas

IB, McS, cPhD

 

Citas

Rawla P. Epidemiology of prostate cancer. World J Oncol. 2019; 10(2):63-89.

Ministerio de Salud y Protección Social. Análisis de Situación de Salud (ASIS) Colombia, [en línea] 2020. [citada 2020 junio 2]. Hallado URL: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/ED/PSP/asis-2019-colombia.pdf

Jackson BL, Grabowska A, Ratan H.L. MicroRNA in prostate cancer: functional importance and potential as circulating biomarkers. BMC Cancer. 2014; 14:930.

Movahedpour A, Ahmadi N, Ghasemi Y, Savardashtaki A, Shabaninejad Z. Circulating microRNAs as potential diagnostic biomarkers and therapeutic targets in prostate cancer: Current status and future perspectives. J Cell Biochem. 2019; 120 (10): 16316-16329.

Santos PB, Patel H, Henrique R, Félix A. Can epigenetic and inflammatory biomarkers identify clinically aggressive prostate cancer? World J Clin Oncol. 2020; 11(2): 43–52.

Jin W, Fei X, Wang X, Song Y, Chen F. Detection and prognosis of prostate cancer using blood-based biomarkers. Mediators Inflamm 2020; 2020: 8730608.

Khan S, Ayub H, Khan T, Wahid F. MicroRNA biogenesis, gene silencing mechanisms and role in breast, ovarian and prostate cancer. Biochimie. 2019; 167:12

Wei J, Yin Y, Deng Q, Zhou J, Wang Y, Yin G, et al. Integrative Analysis of MicroRNA and Gene Interactions for Revealing Candidate Signatures in Prostate Cancer. Front Genet. 2020; 11: 176.

Matin F, Jeet V, Clements JA, Yousef GM, Batra J. MicroRNA theranostics in prostate cancer precision medicine. Clin Chem. 2016; 62(10):1318-1333.

Yan JW, Lin JS, He XX. The emerging role of miR‐375 in cancer. Int. J. Cancer. 2014; 135: 1011-1018.

Pinzón CE, Serrano ML, Sanabria MC. Papel de la vía fosfatidilinositol 3 kinasa (PI3K/Akt) en humanos. Revista Ciencias de la Salud. 2009. 7(2).

Jia Y, Gao Y, Dou J. Effects of miR-129-3p on biological functions of prostate cancer cells through targeted regulation of Smad3. Oncol Lett. 2020; 19(2):1195–1202.

Shankar E, Weis MC, Avva J, Shukla S, Shukla M, Sreenath SN, et al. Complex systems biology approach in connecting PI3K-Akt and NF-κB pathways in prostate cancer. Cells. 2019; 8(3):201.

Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Molecular Cancer. 2019; 26 (18).

Zheng XM, Zhang P, Liu MH, Chen P, Zhang WB. MicroRNA-30e inhibits adhesion, migration, invasion and cell cycle progression of prostate cancer cells via inhibition of the activation of the MAPK signaling pathway by downregulating CHRM3. Int J Oncol. 2019; 54(2):443-454.

Gao S, Zhao Z, Wu R, Wu L, Tian X, Zhang Z. MiR-1 inhibits prostate cancer PC3 cells proliferation through the Akt/mTOR signaling pathway by binding to c-Met. Biomed Pharmacother. 2019; 109:1406-1410.

Zhang Y, Zhang D, Lv J, Wang S, Zhang Q. miR-410-3p promotes prostate cancer progression via regulating PTEN/AKT/mTOR signaling pathway. Biochem Biophys Res Commun. 2018; 503(4):2459-2465.

Tripathi V, Popescu N, Zimonjic, D. DLC1 induces expression of E-cadherin in prostate cancer cells through Rho pathway and suppresses invasion. Oncogene. 2014; 33:724–733.

Tao Z, Xu S, Ruan H, Wang T, Song W, Qian L, Chen K: MiR-195/-16 Family Enhances radiotherapy via T cell activation in the tumor microenvironment by blocking the PD-L1 Immune checkpoint. Cell Physiol Biochem. 2018; 48:801-814.

Huang CF, Lira C, Chu K, Bilen MA, Lee YC, Ye X, Kim SM, Ortiz A, Wu FL, Logothetis CJ, Yu-Lee LY, Lin SH. Cadherin-11 increases migration and invasion of prostate cancer cells and enhances their interaction with osteoblasts. Cancer Res. 2010; 70(11):4580-4589.

Wang N, Li Q, Feng NH, Cheng G, Guan ZL, Wang Y, Qin C, Yin CJ, Hua LX. miR-205 is frequently downregulated in prostate cancer and acts as a tumor suppressor by inhibiting tumor growth. Asian J Androl. 2013; 15(6):735-741.

Liu LZ, Li C, Chen Q, Jing Y, Carpenter R, Jiang Y, et al. MiR-21 Induced angiogenesis through AKT and ERK activation and HIF-1α expression. PLOS ONE. 2011; 6(4): e19139.

Kasomva K, Sen A, Paulraj MG, Sailo S, Raphael V, Puro K u, et al. Roles of microRNA in prostate cancer cell metabolism. Int J Biochem Cell Biol. 2018; 102:109-116.

Barach YS, Lee JS, Zang X. T cell coinhibition in prostate cancer: new immune evasion pathways and emerging therapeutics. Trends Mol Med. 2011; 17(1):47-55.

Cortez MA, Ivan C, Valdecanas D, Wang X, Peltier HJ, Ye Y, et al. PDL1 Regulation by p53 via miR-34. J Natl Cancer Inst. 2015; 108(1):djv303.

Pesta M, Klecka J, Kulda V, Topolcan O, Hora M, Eret M, et al. Importance of miR-20a expression in prostate cancer tissue. Anticancer Res. 2010; 30(9):3579-3583.

Bidarra D, Constâncio V, Barros-Silva D, Ramalho-Carvalho J, Moreira-Barbosa C, Antunes A, et al. Circulating microRNAs as biomarkers for prostate cancer detection and metastasis development prediction. Front Oncol. 2019; 9:900.

Vanacore D, Boccellino M, Rossetti S, Cavaliere C, D'Aniello C, Di Franco R, et al. Micrornas in prostate cancer: an overview. Oncotarget. 2017; 8(30):50240-50251.

Guo X, Han T, Hu P, Guo X, Zhu C, Wang Y, et al. Five microRNAs in serum as potential biomarkers for prostate cancer risk assessment and therapeutic intervention. Int Urol Nephrol. 2018; 50(12):2193-2200.

Lyu J, Zhao L, Wang F, Ji J, Cao Z, Xu H, Shi X, Zhu Y, Zhang C, Guo F, Yang B, Sun Y. Discovery and Validation of Serum MicroRNAs as Early Diagnostic Biomarkers for Prostate Cancer in Chinese Population. Biomed Res Int. 2019 Aug 25;2019:9306803. doi: 10.1155/2019/9306803.

Jin W, Fei X, Wang X, Chen F, Song Y. Circulating miRNAs as biomarkers for prostate cancer diagnosis in subjects with benign prostatic hyperplasia. J Immunol Res. 2020; 2020:5873056.

Farran B, Dyson G, Craig D, Dombkoski A, Beebe-Dimmer JL, Powell IJ, et al. A study of circulating microRNAs identifies a new potential biomarker panel to distinguish aggressive prostate cancer. Carcinogenesis. 2018; 39(4):556-561.

Shukla KK, Misra S, Pareek P, Mishra V, Singhal B, Sharma P, et al. Recent scenario of microRNA as diagnostic and prognostic biomarkers of prostate cancer. Urologic Oncology. 2017; 35(3):92-101.

Wang Y, Lieberman R, Pan J, Zhang Q, Du M, Zhang P, et al. miR-375 induces docetaxel resistance in prostate cancer by targeting SEC23A and YAP1. Mol Cancer. 2016; 15(1):70.

Mao A, Zhao Q, Zhou X, Sun C, Si J, Zhou R, et al. MicroRNA-449a enhances radiosensitivity by downregulation of c-Myc in prostate cancer cells. Sci Rep. 2016; 6:27346.

Thieu W, Tilki D, de Vere White R, Evans CP. The role of microRNA in castration-resistant prostate cancer. Urol Oncol. 2014; 32(5):517-523.

Bhatnagar N, Li X, Padi SK, Zhang Q, Tang MS, Guo B. Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells. Cell Death Dis. 2010; 1(12):e105.

Nagesh PKB, Chowdhury P, Hatami E, Boya VKN, Kashyap VK, Khan S, et al. miRNA-205 Nanoformulation sensitizes prostate cancer cells to chemotherapy. Cancers (Basel). 2018; 10(9):289.

Ni J, Bucci J, Chang L, Malouf D, Graham P, Li Y. Targeting MicroRNAs in prostate cancer radiotherapy. Theranostics. 2017; 7(13):3243-3259.

Li B, Shi XB, Nori D, Chao CK, Chen AM, Valicenti R, White Rde V. Down-regulation of microRNA 106b is involved in p21-mediated cell cycle arrest in response to radiation in prostate cancer cells. Prostate. 2011 May;71(6):567-74. doi: 10.1002/pros.21272.

Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G, Calin GA. microRNA therapeutics in cancer - an emerging concept. EBioMedicine. 2016;12:34-42.

Kim TK, Eberwine JH. Mammalian cell transfection: the present and the future. Anal Bioanal Chem. 2010;397(8):3173-3178.

Ekin A, Karatas OF, Culha M, Ozen M. Designing a gold nanoparticle-based nanocarrier for microRNA transfection into the prostate and breast cancer cells. J Gene Med. 2014, 16(11-12):331-5.

Bonneau E, Neveu B, Kostantin E, Tsongalis GJ, De Guire V. How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC. 2019;30(2):114-127.

Hong DS, Kang YK, Borad M, Sachdev J, Ejadi S, Lim HY, Brenner AJ, Park K, Lee JL, Kim TY, Shin S, Becerra CR, Falchook G, Stoudemire J, Martin D, Kelnar K, Peltier H, Bonato V, Bader AG, Smith S, Kim S, O'Neill V, Beg MS. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 2020;122(11):1630-1637. doi: 10.1038/s41416-020-0802-1.

Chakraborty C, Sharma AR, Sharma G, Lee SS. Therapeutic advances of miRNAs: A preclinical and clinical update. J Adv Res. 2020; 28:127-138.

Descargas

Publicado

2021-05-04

Cómo citar

Fernández Turizo, M. J., Galindo Quintero, M. C., Mosquera Lizcano, G. A., Echavarría Cano, O., & Gallo García, Y. M. (2021). Papel de los microARN en la patogénesis del cáncer de próstata. CES Medicina, 35(1), 26-36. https://doi.org/10.21615/cesmedicina.35.1.3

Número

Sección

Revisión de tema