Influencia abiótica en la miogénesis de peces teleósteos


  • Charles Oswaldo Sánchez Roncancio Universidad de Cundinamarca
  • José Gilmar da Silva Souza Universidade Federal de Lavras
  • Ángel Andrés Arias Vigoya Fundación Universitaria San Martín

Palabras clave:

crecimiento, miogénesis, peces teleósteos


Los peces teleósteos son organismos que generalmente tienen un límite de crecimiento indeterminado y están presentes en diferentes biomas con diferentes características ambientales. Los teleósteos poseen hasta el 80% de su composición corporal compuesta de tejido muscular, compuesto por fibras musculares y células satélite indiferenciadas, formando un tejido muscular complejo cuya forma es muy variada dependiendo de las especies que componen este grupo de animales. Un punto importante por considerar es que el crecimiento muscular de los peces está influenciado por las condiciones ambientales en que están inseridos. Esta influencia ocurre a nivel molecular, afectando la transcripción y la funcionalidad de diferentes transcripciones relacionadas con la miogénesis en diferentes etapas del desarrollo de los peces. Esta revisión tiene como objetivo discutir algunos de los puntos clave sobre la influencia de los factores ambientales en el desarrollo y el crecimiento muscular de los peces.


Los datos de descargas todavía no están disponibles.


Johnston, I. A. Environment, and plasticity of myogenesis in teleost fish. 2006; J. Exp. Biol. (209); 2249–2264.

Johnston, I. a, N. I. Bower, and D. J. Macqueen. Growth and the regulation of myotomal muscle mass in teleost fish. 2011; J. Exp. Biol. 214;1617–1628.

Zimmerman, A. M., and M. S. Lowery. Hyperplastic development and hypertrophic growth of muscle fibers in the white seabass (Atractoscion nobilis). J. Exp. Zool. 1999; (284); 299–308.

Keenan Samuel R. and Currie Peter D. The Developmental Phases of Zebrafish Myogenesis Australian Regenerative Medicine Institute, Monash University. 2019. J. Dev. Biol., 7(2), 12.

Pough, f.h.; Janis, c.m.; Heiser, j.b. A vida dos vertebrados. São Paulo: editora Atheneu. 699p, 2003.

Foschini, r. m. s. a.; et al. Células satélites musculares. arquivo brasileiro de oftalmologia, 2004; (67), n.4, p.681-687.

Almeida, F. L. A., R. F. Carvalho, D. Pinhal, C. R. Padovani, C. Martins, and M. Dal Pai-Silva. Differential expression of myogenic regulatory factor MyoD in pacu skeletal muscle (Piaractus mesopotamicus) Holmberg 1887: Serrasalminae, Characidae, Teleostei) during juvenile and adult growth phases. 2008. Micron 39:1306–1311.

Goulding, M., A. Lumsden, and a J. Paquette. Regulation of Pax-3 expression in the dermomyotome and its role in muscle development. Development 1994; 120: 957–971.

Watanabe, W. O., T. M. Losordo, K. Fitzsimmons, and F. Hanley. Tilapia Production Systems in the Americas: Technological Advances, Trends, and Challenges. 2002. Rev. Fish. Sci. 10:465–498.

Langley, B., M. Thomas, A. Bishop, M. Sharma, S. Gilmour, and R. Kambadur. Myostatin Inhibits Myoblast Differentiation by Down-regulating MyoD Expression. 2002. J. Biol. Chem. 277:49831–49840.

Carani, F. R., B. O. da S. Duran, T. G. De Paula, W. P. Piedade, and M. Dal-Pai. Morphology and expression of genes related to skeletal muscle growth in juveniles of pirarucu (Arapaima gigas, Arapaimatidae, Teleostei). 2013. Acta Sci. Anim. Sci. 35:219–226.

Santello, G. A., F. De Assis, F. De Macedo, R. M. G. De, E. N. Martins, F. J. Lourenço, and F. J. Dias.. Características das fibras musculares de cordeiros nascidos de ovelhas recebendo suplementação proteica no terço inicial da gestação. 2010 Rev. Bras. Zootec. 39:2288–2296.

Blagden, C.S.; Currie, P.D.; Ingham, P.W.; Hughes, S.M. Notochord induction of zebrafish slow muscle mediated by Sonic hedgehog. Genes Dev. 1997, 11, 2163–2175.

Du, S.J.; Devoto, S.H.; Westerfield, M.; Moon, R.T. Positive and negative regulation of muscle cell identity by members of the hedgehog and TGF-gene families. J. Cell Biol. 1997, 139, 145–156.

Gurevich, D.; Siegel, A.; Currie, P.D. Skeletal Myogenesis in the Zebrafish and Its Implications for Muscle Disease Modelling; Brand-Saberi, B., Ed.; Results and Problems in Cell Diferentiation; Springer: Berlin, Germany 2015; 56.

Devoto, S.H.; Stoiber, W.; Hammond, C.L.; Steinbacher, P.; Haslett, J.R.; Barresi, M.J.F.; Patterson, S.E.; Adiarte, E.G.; Hughes, S.M. Generality of vertebrate developmental patterns: Evidence for a dermomyotome in fish. Evol. Dev. 2006, 8, 101–110.

Stellabotte, F.; Dobbs-McAulie, B.; Fernandez, D.A.; Feng, X.; Devoto, S.H. Dynamic somite cell rearrangements lead to distinct waves of myotome growth. Development 2007, 134, 1253–1257.

Nguyen, P.D.; Hollway, G.E.; Sonntag, C.; Miles, L.B.; Hall, T.E.; Berger, S.; Fernandez, K.J.; Gurevich, D.B.; Cole, N.J.; Alaei, S.; et al. Haematopoietic stem cell induction by somite-derived endothelial cells controlledby meox1. Nature 2014, 512, 314–318.

Ma, R.C.; Jacobs, C.T.; Sharma, P.; Kocha, K.M.; Huang, P. Stereotypic generation of axial tenocytes from bipartite sclerotome domains in zebrafish. PLoS Genet. 2018, 14.

López-Albors, O., M. D. Ayala, F. Gil, A. Garcı́a-Alcázar, E. Abellán, R. Latorre, G. Ramı́rez-Zarzosa, and J. M. Vázquez. Early temperature effects on muscle growth dynamics and histochemical profile of muscle fibres of sea bass Dicentrarchus labrax L., during larval and juvenile stages.2003. Aquaculture 220:385–406.

Almeida, F. L. A., N. S. Pessotti, D. Pinhal, C. R. Padovani, N. de J. Leitão, R. F. Carvalho, C. Martins, M. C. Portella, and M. Dal Pai-Silva. Quantitative expression of myogenic regulatory factors MyoD and myogenin in pacu (Piaractus mesopotamicus) skeletal muscle during growth. 2010 Micron 41:997–1004.

Zhu, L., L. Nie, G. Zhu, L. Xiang, and J. Shao. Advances in research of fish immune-relevant genes: A comparative overview of innate and adaptive immunity in teleosts.2013 (39):39–62.

Lovell, T. The nutrients. In Nutrition and Feeding of Fish; Van Nostrand Reinhold: New York, NY, USA, 1989; pp. 11–71.

Houlihan, D.F.; Mathers, E.M.; Foster, A. Biochemical correlates of growth rate in fish. In Fish Ecophysiology;Chapman & Hall: London, UK, 1993; pp. 45–71.

Stickland, N.C.; White, R.N.; Mescall, P.E.; Crook, A.R.; Thorpe, J.E. The efect of temperature on myogenesis in embryonic development of the Atlantic salmon (Salmo salar L.). Anat. Embryol. 1988, 178, 253–257.

Leitão, n. j.; Dal pai-silva, m.; Almeida, f. l. a.; Portella, m. c. Crescimento muscular em peixes. Panorama da Aquicultura. 2012, v. 22, N° 129 p. 32-37.

Matschak, T.W.; Hopcroft, T.; Mason, P.S.; Crook, A.R.; Stickland, N.C. Temperature and oxygen tension influence the development of muscle cellularity in embryonic rainbow trout. J. Fish Biol. 1998, 53, 581–590.

Rowlerson, A.; Veggetti, A. Cellular mechanisms of post-embryonic muscle growth in aquaculture species. In Fish Physiology; Academic Press: Cambridge, MA, USA, 2001; pp. 103–140.

Killeen, J. R., H. A. McLay, and I. A. Johnston. 1999. Temperature and neuromuscular development in the tambaqui. 1999 J. Fish Biol. 55:66–83.

Alves-Costa, F. A., C. M. Barbosa, R. C. M. Aguiar, E. A. Mareco, and M. Dal-Pai-Silva. Differential Expression of Myogenic Regulatory Factor Genes in the Skeletal Muscles of Tambaqui Colossoma macropomum (Cuvier 1818 ) from Amazonian Black and Clear Water. 2013 Int. J. Genomics:9.

Johnston, i. a.; Manthri, s.; Smart, a.; Campbell, p.; Nickell, d.; Alderson, R. Plasticity of muscle fibre number in seawater stages of Atlantic salmon in response to photoperiod manipulation. The Journal of Experimental Biology, Cambridge,2003. v. 206, p. 3425–3435.

Du, M., B. Wang, X. Fu, Q. Yang, and M. Zhu. 2015. Fetal programming in meat production.2015, Meat Sci. 109:40–47

Green, B. S., and R. Fisher. Temperature influences swimming speed, growth and larval duration in coral reef fish larvae.2004 J. Exp. Mar. Bio. Ecol. 299:115–132.

Macqueen, D. J., D. Robb, and I. A. Johnston.Temperature influences the coordinated expression of myogenic regulatory factors during embryonic myogenesis in Atlantic salmon (Salmo salar L.). 2007. J. Exp. Biol. 210:2781–2794.

Albokhadaim, I., C. L. Hammond, C. Ashton, B. H. Simbi, S. Bayol, S. Farrington, and N. Stickland. Larval programming of post-hatch muscle growth and activity in Atlantic salmon (Salmo salar). 2007 J. Exp. Biol. 210:1735–1741.

Macqueen, D. J., D. H. F. Robb, T. Olsen, L. Melstveit, C. G. M. Paxton, and I.A. Johnston.Temperature until the “eyed stage” of embryogenesis programmes the growth trajectory and muscle phenotype of adult Atlantic salmon. 2008. Biol. Lett. 4:294–298.

Campos, C., J. M. O. Fernandes, L. E. C. Conceição, S. Engrola, V. Sousa, and L. M. P. Valente. Thermal conditions during larval pelagic phase influence subsequent somatic growth of Senegalese sole by modulating gene expression and muscle growth dynamics. 2013. Aquaculture 414-415:46–55.

Garcia de la Serrana D..; Viera V.; Andree K.; Darias M.; Estévez A.; Gisbert E. and Johnston I. A. Development temperature has persistent effects on muscle growth responses in gilthead sea bream, 2012 Plos one. 7(12): e51884.

Gutierrez de Paula, T., F. L. A. de Almeida, F. R. Carani, I. J. Vechetti-Júnior, C. R. Padovani, R. A. S. Salomão, E. A. Mareco, V. B. dos Santos, and M. Dal-Pai-Silva. Rearing temperature induces changes in muscle growth and gene expression in juvenile pacu (Piaractus mesopotamicus). Comp. Biochem. Physiol. 2014. Part B Biochem. Mol. Biol. 169:31–37.

Campos, C., L. M. P. Valente, L. E. C. Conceição, S. Engrola, V. Sousa, E. Rocha, and J. M. O. Fernandes. Incubation temperature induces changes in muscle cellularity and gene expression in Senegalese sole (Solea senegalensis). 2013. Gene 516:209–217.