Toxicity of Zinc at sublethal exposure to rainbow trout (Oncorhynchus mykiss)


  • Fereshteh Nasri Shahrekord University
  • M. Saeed Heydarnejad Shahrekord University
  • Amin Nematollahi Shahrekord University


Zinc (Zn), can alter different physiological processes in fish such as growth and serum parameters. The objective of this study was to investigate the toxicity of Zn on sublethal exposure to rainbow trout (Oncorhnychus mykiss). Fish exposed to higher levels of Zn grew slower than fish exposed to lower  levels of Zn. Weight gain and SGR (Specific Growth Rate) decreased linearly as the Zn level in the water increased. The CF (Condition factor) of fish grown in water with a high concentration of Zn also decreased significantly compared to the low concentration of Zn, whereas the Food Conversion Ratio (FCR) increased with the concentration of Zn in water. Both AST (Aspartate Transaminase) and ALT (Alanine Transaminase) activities were significantly altered by Zn and showed a linear pattern and decreased after 30 days, while ALP (Alkaline Phosphatase) levels showed a remarkable increase from a mean level of control. This study suggests that biochemical parameters of growth and serum could be used as important and sensitive biomarkers to monitor heavy metal toxicity on fish health status. 


Toxicidad de zinc por exposición subletal en trucha arco iris (Oncorhynchus mykiss)

TZinc (Zn), puede alterar diferentes procesos fisiológicos en peces, tales como, el crecimiento y los parámetros séricos. El objetivo de este estudio fue investigar la toxicidad de Zn en la exposición subletal de la trucha arco iris (Oncorhnychus mykiss). Los peces expuestos a niveles más altos de Zn crecieron más lentamente que los peces expuestos a niveles más bajos de Zn. El aumento de peso y la SGR (tasa de crecimiento específica) disminuyeron linealmente a medida que aumentó el nivel de Zn en el agua. El CF (factor de condición) de los peces cultivados en agua con una alta concentración de Zn, también disminuyó significativamente en comparación con la baja concentración de Zn, mientras que el índice de conversión de alimentos (FCR) aumentó con la concentración de Zn en el agua. Las actividades AST (Aspartate Transaminase) y ALT (Alanine Transaminase) fueron significativamente alteradas por el Zn y mostraron un patrón lineal y disminuyeron después de 30 días, mientras que los niveles de ALP (Fosfatasa Alcalina) mostraron un aumento notable desde un nivel medio de control. Este estudio sugiere que los parámetros bioquímicos de crecimiento y suero podrían usarse como biomarcadores importantes y sensibles para controlar la toxicidad de metales pesados en el estado de salud de los peces. 

Palabras clave: Trucha arcoiris, metales pesados, Zinc, crecimiento.


Toxicidade por exposição ao zinco em trutas arco-íris (Oncorhynchus mykiss)

O TZinc (Zn) pode alterar diferentes processos fisiológicos em peixes, como parâmetros de crescimento e soro. O objetivo deste estudo foi investigar a toxicidade do Zn na exposição subletal à truta arco-íris (Oncorhnychus mykiss). Os peixes expostos a níveis mais altos de Zn cresceram mais lentamente do que os peixes expostos a níveis mais baixos de Zn. O ganho de peso e a SGR (Taxa de Crescimento Específico) diminuíram linearmente à medida que o nível de Zn na água aumentou. O CF (fator de condição) de peixes cultivados em água com alta concentração de Zn também diminuiu significativamente em comparação com a baixa concentração de Zn, enquanto a tax on de conversão alimentar (FCR) aumentou com a concentração de Zn na água. As atividades de AST (Aspartate Transaminase) e ALT (Alanine Transaminase) foram significativamente alteradas pelo Zn e mostraram um padrão linear e diminuíram após 30 dias, enquanto os níveis de ALP (Fosfatase Alcalina) mostraram um aumento notável em relação ao nível médio de controle. Este estudo sugere que parâmetros bioquímicos de crescimento e soro podem ser usados como biomarcadores importantes e sensíveis para monitorar a toxicidade de metais pesados no estado de saúde dos peixes.

Palavras-chave: Truta arco-íris, metais pesados, Zinco, crescimento.


Los datos de descargas todavía no están disponibles.


1. Adhikari S, Sarkar B, Chatterjee A, Mahapatra CT, Ayyappan S. (2004). Effects of
cypermethrin and carbofuran haematological parameters and prediction of their
recovery in a freshwater teleost. Labeo rohita (Hamilton). Ecotoxicol Environ Saf
58: 220–226.
2. Alabater JS, Loyd R. (1980). Water Quality Criteria for Freshwater Fish. Butterworths.
London. p 297.
3. Basaglia F. (2000). Isozyme distribution of ten enzymes and their loci in South
American lung fish. Lepidosiren paradoxa (Osteichtyes. Dipnoi). Comp Biochem
Physiol B126: 503–510.
4. Bedii C, Kenan E. (2005). The effects of Cadmium on levels of glucose in serum
and glycogen reserves in the liver and muscle tissues of Cyprinus carpio (L). Turk
J Vet Anim Sci 29: 113-117.
5. Bernet D, Schmidt H, Wahli T. Burkhardt-Holm P. (2001). Effluent from a sewage
treatment works causes changes in serum chemistry of brown trout (Salmo trutta
L.). Ecotoxicol Environ Saf 48: 140–147.
6. Canli M. (1995). Effect of mercury. chromium. and nickel on some blood parameters
in the carp. Cyprinus carpio. Turk J Zool 19: 305–311.
7. Chowdhury MJ, Pane EF, Wood CM. (2004). Physiological effects of dietary cadmium
acclimation and waterborne cadmium challenge in rainbow trout: respiratory. iono
regulatory. and stress parameters. Comp Biochem Physiol C 139: 163-173.
8. Detholff GM, Schlenk D, Hamm JT, Bailey HC. (1999). Alterations in physiological
parameters of rainbow trout (Oncorhynchus mykiss) with exposure to copper and
copper/zinc mixtures. Ecotoxicol Environ Saf 42: 253–264.
9. Do Carmoe Sa MV, Pezzato LE, Barros MM, Padilla PM. (2007). Optimum zinc supplementation
level in Nile tilapia Oreochromis niloticus juvenile’s diets. Aquacul
238: 385-401.
10. Folmar LC. (1993). Effects of chemical contaminants on blood chemistry of teleost
fish: A bibliography and synopsis of selected effects. Environ Toxicol Chem
12: 337–375.
11. Fountoulakil E, Morgane H, Rigos G, Antigoni V, Mente E, Sweetman J, Nengas I.
(2010). Evaluation of zinc supplementation in European sea bass (Dicentrarchus
labrax) juvenile diets. Aquacul Res 41: 208-216.
12. Galvez F, Nebb N, Hogstrand C, Wood CM. (1998). Zinc binding to the gills of Rainbow
Trout: the effect of long-term exposure to sublethal zinc. J Fish Biol 52: 1089-1104.
13. Golovina NA. (1996). Morphofunctional characteristics of the blood of fish as objects
of aquaculture. Doctoral thesis. Moscow 53 pp (in Russian).
14. Gropper SS, Smith JL, Groff JL. (2005). Microminerals. In: Gropper SS. Smith
JL. Groff JL (eds) Advanced Nutrition and Human Metabolism 4th ed. Thomson
Wadsworth. Belmont. pp 417–487.
15. Grosell M, McDonald MD, Wood CM, Walsh PJ. (2004). Effects of prolonged copper
exposure in the marine gulf toadfish (Opsanus beta) I: Hydromineral balance and
plasma nitrogenous waste products. Aquat Toxicol 68: 249–262.
16. Gul S, Belge-Kurutas E, Yildiz E, Sahan A, Doran F. (2004). Pollution correlated
modifications of liver antioxidant systems and histopathology of fish (Cyprinidae)
living in Seyhan Dam Lake. Turkey. Enviro Int 30: 605–609.
17. Health AG. (1995). Water pollution and fish physiology. CRC Lewis Publishers.
Boca Raton. pp 125–140.
18. Hollis L, McGeer JC, McDonald DG, Wood CM. (1999). Cadmium accumulation. gill
Cd binding. acclimation. and physiological effects during long term sublethal Cd
exposure in rainbow trout. Aquat Toxicol 46: 101–119.
19. Lan WG, Wang MK, Chen N, Sin YM. (1995). Effects of combined copper. zinc. chromium.
and selenium by orthogonal array design on alkaline phosphatase activity
in liver of the red sea bream. Chrysophrys major. Aquat 131: 219–230.
20. Lévesque HM, Dorval J, Van der kraak GJ, Campbell PGC, Hontela A. (2003). Hormonal
morphological and physiological responses of yellow perch (Perca flavescens)
to chronic environmental metal exposures. J Toxicol Environ 66: 87–106.
21. Ln KN, Vosylienë MZ. (1999). Peculiarities of the physiological responses of rainbow
trout to copper. Acta Zoo Litua Hydro 9: 1392–1657.
22. Mansouri BR, Baramaki H, Ebrahimpour M. (2011). Acute toxicity bioassay of
mercury and silver on Capoeta fusca (black fish). Toxicol Ind Health; 28(5): 393-398.
23. McGeer JC, Szebedinszky C, McDonald DG, Wood CM. (2000). Effects of chronic
sublethal exposure to waterborne Cu. Cd or Zn in rainbow trout. 1: iono-regulatory
disturbance and metabolic costs. Aquat Toxicol 50: 231–243.
24. McLeay DJ. (1977). Development of a blood sugar bioassay for rapidly measuring
stressful levels of pulpmill effluents in salmonid fish. J Fish Res Bd Can 34: 477-485.
25. Ogino C, Yang GY. (1978). Requirement of rainbow trout for dietary zinc. Nip Suis
Gak Shi 44: 1015-1018.
26. Oner M, Atli G, Canli M. (2008). Changes in serum biochemical parameters of
freshwater fish Oreochromis niloticus following prolonged metal (Ag. Cd. Cr. Cu.
Zn) exposures. Environ Toxicol Chem 27: 360–366.
27. Ozman M, Gungordu A, Kucukbay FZ, Guler RE. (2006). Monitoring the effects of
water pollution on Cyprinus carpio in Karakaya Dam Lake. Turkey. Ecotoxicology
28. Park CW, Shimizu C. (1989). Suitable level of zinc supplementation to the formulated
diets in young eel. Nip Suis Gak Shi 55: 2137–2141.
29. Pratap HB, WendelaarBonga SE. (1990). Effect of waterborne cadmium on plasma
cortisol and glucose in the cichlid fish Oreochromis mossambicus. Comp Biochem
Physiol 95:313–317.
30. Rajkowska M, Protasowicki M. (2011). Distribution of selected metals in bottom
sediments of lakes I ńsko and Wiola (Poland). Ecol Chem Engineer
18: 805–812.
31. Read ES, Barrows FT, Gaylord TG, Paterson J, Peterson Sealy WM. (2014). Investigation
of the effects of dietary protein source on copper and zinc bioavailability
in fish meal and plant-based diets for rainbow trout. Aquacul 432: 97–105.
32. Rowe CL. (2003). Growth responses of an estuarine fish exposed to mixed trace
elements in sediments over a full life cycle. Ecotoxicol Environ Saf 54: 229-31.
33. Shaw JR, Dempsey TD, Chen CY, Hamilton JW, Folt CL.
(2006). Comparative toxicity of cadmium. zinc and mixtures of cadmium and zinc
to daphnids. Environ Toxicol Chem 25: 182–189.
34. Suvetha L, Ramesh M, Saravanan M. (2010). Influence of cypermethrin toxicity
on ionic regulation and gill Na+/K+-ATPase activity of a freshwater teleost fish
Cyprinus carpio. Environ Toxicol Pharmacol 29: 44–49.
35. Tuncsoya M, Durana S, Yesilbudaka B, Ayb O, Cicikb B, Erdem C. (2016). Short
term effects of zinc on some sera biochemical parameters and tissue accumulation
of Clariasgariepinus. Fres Environ Bull 2: 658-664.
36. Vinodhini R, Narayanan M. (2008). Bioaccumulation of heavy metals in organs of
fresh water fish Cyprinus carpio (Common carp). Inter J Environ Sci Technol
5: 179–182.
37. Weatherley AH, Cill HS. (1987). The Biology of Fish Growth. Academic Press.
New York.
38. Welker T, Barrows F, Overturf K, Gaylord G, Sealey W. (2016). Optimizing zinc supplementation
levels of rainbow trout (Oncorhynchus mykiss) fed practical type
fishmeal- and plant-based diets. Aquacul Nut 22: 91-108.
39. Younis EM, Abdel-Warith AA, Al-Asgah NA. (2012). Hematological and enzymatic
responses of Nile tilapia Oreochromis niloticus during short and long term sublethal
exposure to zinc. Afri J Biotechnol 11: 4442-4446.
40. Zheng JL, Luo Z, Hu W, Liu CX, Chen QL, Zhu QL, Gong Y. (2015). Different
effects of dietary Zn deficiency and excess on lipid metabolism in yellow
catfish Pelteobagrus fulvidraco. Aquacul 435: 10–17.
41. Zheng LL, Yuan SS, Wu CW, Li WY. (2016). Chronic waterborne zinc and cadmium
exposures induced different responses towards oxidative stress in the liver of
zebrafish. Aquat Toxicol 177: 261-268.
42. Zikic RV, Stajn AS, Pavlovic SZ, Ognjanovic BI, Saicic ZS. (2001). Activities of superoxide
dismutase and catalase in erythrocytes and plasma transaminases of
goldfish (Carassiusauratus gibelio Bloch.) exposed to cadmium. Physiol Res 50: