Factores de precisión general y de error general en el monitoreo metacognitivo y el papel del tiempo en la tarea de predecir juicios metacognitivos

Autores/as

  • Antonio P. Gutierrez de Blume Georgia Southern University http://orcid.org/0000-0001-6809-1728
  • Gregory Schraw University of Nevada
  • Fred Kuch University of Nevada
  • Aaron S Richmond Metropolitan State University of Denver

DOI:

https://doi.org/10.21615/cesp.5494

Palabras clave:

metacognición, monitoreo, precisión y error, juicios de confianza, tiempo en la tarea

Resumen

Gutiérrez et al. (2016) realizaron un experimento que proporcionó evidencia de la existencia de dos factores distintos en el monitoreo metacognitivo: precisión general y error general. Encontraron factores de error y precisión específicos de dominio de nivel 1 que se cargaron en factores de error y precisión general de dominio de segundo orden, que luego se cargaron en un factor de monitoreo general de tercer orden. En el presente estudio, ese experimento se repitió con 170 participantes diferentes de la misma población. El presente estudio confirmó los hallazgos originales. Ambos estudios sugieren que el monitoreo metacognitivo consiste en dos tipos diferentes de procesos cognitivos: uno que está asociado con juicios de monitoreo precisos y otro que está asociado con errores en los juicios de monitoreo. Además, ambos estudios sugieren que factores de precisión y error específico de dominio se cargan en factores de error y precisión general de dominio de segundo orden. Además, en este estudio diseñamos un experimento en el que la precisión general y el error general se tratan como dimensiones latentes separadas y descubrimos que los sujetos emplean los mismos recursos que utilizan para desarrollar juicios precisos como una “base” para calibrar los recursos necesarios en juicios erróneos, pero no viceversa. Este hallazgo respalda y amplía hallazgos anteriores que sugieren que los procesos involucrados en el manejo de la precisión metacognitiva son diferentes de los involucrados en la lucha contra el error metacognitivo. Es conveniente enfocar las futuras intervenciones de instrucción en la monitorización metacognitiva en mejorar la precisión o reducir el error, pero no ambas al mismo tiempo. 

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Antonio P. Gutierrez de Blume, Georgia Southern University

Ph.D. in Educational Psychology. Associate Professor of Research in the Department of Curriculum, Foundations, and Reading, Georgia Southern University, United States. 

Gregory Schraw, University of Nevada

Ph.D. in Educational Psychology. Professor in the Department of Educational Psychology and Higher Education, University of Nevada, Las Vegas, United States. 

Fred Kuch, University of Nevada

Ph.D. in Educational Psychology. Research Associate at the University of Nevada, Las Vegas, United States. 

Aaron S Richmond, Metropolitan State University of Denver

Ph.D. Human Development & Educational Psychology. Professor in the Department of Psychology, Metropolitan State University of Denver, United States. 

Citas

Azevedo, R., & Witherspoon, A. M. (2009). Self-regulated learning with hypermedia. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Handbook of metacognition in education (pp. 278-298). Mahwah, NJ: Erlbaum.

Bentler, P. M. (2005). EQS 6 structural equations program manual. Encino, CA: Multivariate Software (www.mvsoft.com).

Boekaerts, M., & Rozendaal, J. S. (2010). Using multiple calibration measures in order to capture the complex picture of what affects students’ accuracy of feeling of confidence. Learning and Instruction, 20(4), 372-382. https://doi.org/10.1016/j.learninstruc.2009.03.002

Bol, L., Hacker, D. J., O’Shea, P., & Allen, D. (2005). The influence of overt practice, achievement level, and explanatory style on calibration accuracy, and performance. The Journal of Experimental Education, 73, 269-290.

Bol, L., Hacker, D. J., Walck, C. C., & Nunnery, J. A. (2012). The effects of individual or group guidelines on the calibration accuracy and achievement of high school biology students. Contemporary Educational Psychology, https://doi.org/doi:10.1016/j.cedpsych.2012.02.004

Byrne, B. M. (2006). Structural equation modeling with EQS. (2nd ed.). New Jersey, NJ: Lawrence Erlbaum Associates.

Campbell, C. (2009). Middle years students’ use of self-regulating strategies in an online journaling environment. Educational Technology & Society, 12 (3), 98–106.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. 2nd. Mahwah, NJ: Erlbaum.

Dinsmore, D. L., & Parkinson, M. M. (2013). What are confidence judgments made of? Students’ explanations for their confidence ratings and what that means for calibration. Learning and Instruction, 24, 4-14. https://doi.org/doi:10.1016/j.learninstruc.2012.06.001

Dunlosky, J., & Hertzog, C. (2000). Updating knowledge about encoding strategies: A componential analysis of learning about strategy effectiveness from task experience. Psychology and Aging, 15(3), 462–474. https://doi.org/10.1037/0882-7974.15.3.462

Efklides, A. (2008). Metacognition: Defining its facets and levels of functioning in relation to self-regulation and co-regulation. European Psychologist, 13, 277–287. https://doi.org/10.1027/1016-9040.13.4.277

Efklides, A. (2011). Interactions of metacognition with motivation and affect in self-regulated learning: The MASRL model. Educational Psychologist, 46, 6-25. https://doi.org/10.1080/00461520.2011.538645

Ekstrom, R. B., French, J. W., & Harman, H. H. (1976). Manual for kit of factor-referenced cognitive tests. Princeton, NJ: Educational Testing Service.

Ghetti, S., & Angelini, L. (2008). The development of recollection and familiarity in childhood and adolescence: Evidence from the dual‐process signal detection model. Child Development, 79, 339-358.

Gutierrez, A. P., & Price, A. F. (2017). Calibration between undergraduate students’ prediction of and actual performance: The role of gender and performance attributions. The Journal of Experimental Education, 85, 486-500. https://doi.org/10.1080/00220973.2016.1180278

Gutierrez, A. P., & Schraw, G. (2015). Effects of strategy training and incentives on students’ performance, confidence, and calibration. The Journal of Experimental Education, 83, 386-404. https://doi.org/10.1080/00220973.2014.907230

Gutierrez, A. P., Schraw, G., Kuch, F., and Richmond, A. S. (2016). A two-process model of metacognitive monitoring: Evidence for general accuracy and error factors. Learning and Instruction, 44, 1-10. https://doi.org/10.1016/j.learninstruct.2016.002.16

Gutierrez de Blume, A. P. (2017). The effects of strategy training and an extrinsic incentive on fourth- and fifth-grade students’ performance, confidence, and calibration accuracy. Cogent Education, 4, 1-17. https://doi.org/10.1080/2331186X.2017.1314652

Hacker, D. J., Bol, L., & Bahbahani, K. (2008). Explaining calibration accuracy in classroom contexts: The effects of incentives, reflection, and explanatory style. Metacognition & Learning, 3, 101-121.

Hadwin, A. F., & Webster, E. A. (2013). Calibration in goal setting: Examining the nature of judgments of confidence. Learning and Instruction, 24, 37-47. https://doi.org/10.1016/j.learninstruc.2012.10.001

Harris, K. R., Graham, S., Brindle, M., & Sandmel, K. (2009). Metacognition and children's writing. In D. J. Hacker, J. Dunlosky, A. C. Graesser (Eds.), Handbook of metacognition in education (pp. 131-153). New York, NY US: Routledge/Taylor & Francis Group.

Hartwig, M. K., Was, C. A., Isaacson, R. M., & Dunlosky, J. (2012). General knowledge monitoring as a predictor of in-class exam performance. British Journal of Educational Psychology, 82, 456–468. https://doi.org/10.1111/j.2044-8279.2011.02038.x

Huff, J. D., & Nietfeld, J. L. (2009). Using strategy instruction and confidence judgments to improve metacognitive monitoring. Metacognition and Learning, 4, 161-176. https://doi.org/10.1007/s11409-009-9042-8

Kelemen, W. L., Frost, P. J., & Weaver, C. (2000). Individual differences in metacognition: Evidence against a general metacognitive ability. Memory & Cognition, 28(1), 92-107. https://doi.org/10.3758/BF03211579

Kline, R. (2005). Principles and practice of structural equation modeling (pp. 165-207). New York, NY: Guilford Press.

Kolić-Vehovec, S., Bajšanski, I., & Zubković, B. R. (2010). Metacognition and reading comprehension: Age and gender differences. In A. Efklides, P. Misailidi (Eds.), Trends and prospects in metacognition research (pp. 327-344). New York, NY: Springer Science + Business Media. https://doi.org/10.1007/978-1-4419-6546-2_15

Koriat, A. (2012). The self-consistency model of subjective confidence. Psychological Review, 119, 80-113. https://doi.org/10.1037/a0025648

Koriat, A., & Levy-Sardot, R. (1999). Processes underlying metacognitive judgments: Information-based and experience-based monitoring of one’s own knowledge. In S. Chaiken, & Y. Trope (Eds.), Dual-process theories in social psychology (pp. 483 – 502). New York: Guilford.

Koriat, A., Ackerman, R., Adiv, S., Lockl, K., & Schneider, W. (2014). The effects of goal-driven and data-driven regulation on metacognitive monitoring during learning: A developmental perspective. Journal of Experimental Psychology: General, 143, 386-403. https://doi.org/10.1037/a0031768

Krebs, S. S., & Roebers, C. M. (2010). Children's strategic regulation, metacognitive monitoring, and control processes during test taking. British Journal Of Educational Psychology, 80(3), 325-340.

Lin, L. M., Moore, D., & Zabrucky, K. M. (2001). An assessment of students’ calibration of comprehension and calibration of performance using multiple measures. Reading Psychology, 22, 111-128. https://doi.org/10.1080/02702710119125

Lundeberg, M., & Mohan, L. (2009). Context matters: Gender and cross-cultural differences in confidence. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Handbook of metacognition in education (pp. 221-239). New York, NY: Routledge/Taylor & Francis Group.

Lyons, K. E., & Ghetti, S. (2011). The development of uncertainty monitoring in early childhood. Child Development, 82, 1778-1787.

Marshalek, B., Lohman, D. F., & Snow, R. E. (1983). The complexity continuum in the radex and hierarchical models of intelligence. Intelligence, 7, 107-127. https://doi.org/10.1016/0160-2896(83)90023-5

Mengelkamp, C., & Bannert, M. (2010). Accuracy of confidence judgments: Stability and generality in the learning process and predictive validity for learning outcome. Memory & Cognition, 38, 441-451. https://doi.org/10.3758/MC.38.4.441

Nelson, T.O. & Narens, L. (1990). Metamemory: A theoretical framework and some new findings. In G.H. Bower (Ed). The Psychology of Learning and Motivation, 26, 125-173. New York: Academic Press.

Nietfeld, J., & Schraw, G. (2002). The effect of knowledge and strategy training on monitoring accuracy. The Journal of Educational Research, 95(3), 131–142.

Nietfeld, J. L., Cao, L., & Osborne, J. W. (2005). Metacognitive monitoring accuracy and student performance in the postsecondary classroom. Journal of Experimental Education, 74, 7-28.

Ozuru, Y., Kurby, C. A., & McNamara, D. S. (2012). The effect of metacomprehension judgment task on comprehension monitoring and metacognitive accuracy. Metacognition and Learning, 7, 113-131. https://doi.org/10.1007/s11409-012-9087-y

Pieschl, S. (2009). Metacognitive calibration—an extended conceptualization and potential applications. Metacognition and Learning, 4, 3-31. doi:10.1007/s11409-008-9030-4

Pressley, M., & Harris, K. R. (2006). Cognitive strategy instruction: From basic research to classroom instructions. In P. A. Alexander & P. H. Winne (Eds.), Handbook of Educational Psychology (2nd ed., pp. 265-287). Mahwah, NJ: Erlbaum.

Roebers, C. M., Schmid, C., & Roderer, T. (2009). Metacognitive monitoring and control processes involved in primary school children’s test performance. British Journal of Educational Psychology, 79, 749-767. https://doi.org/10.1348/978185409X429842

Roderer, T., & Roebers, C. M. (2010). Explicit and implicit confidence judgments and developmental differences in metamemory: An eye-tracking approach. Metacognition and Learning. 5, 229–250.

Satorra, A. (2000). Scaled and adjusted restricted tests in multi-sample analysis of moment structures. In D. D. H. Heijmans, D. S. G. Pollock, & A. Satorra (Eds.), Innovations in multivariate statistical analysis: Advanced studies in theoretical and applied econometrics: Vol. 36 (pp. 233–247). Dordrecht, Netherlands: Kluwer Academic.

Schneider, W. J., & McGrew, K. S. (2012). The Cattell-Horn-Carroll model of intelligence. In D. P. Flanagan & P. L. Harrison (Eds.), Contemporary intellectual assessment: Theories, tests, and issues (pp. 99-144). New York, NY, US: Guilford Press.

Schraw, G. (2009). Measuring metacognitive judgments. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Handbook of metacognition in education (pp. 415-429). Mahwah, NJ: Erlbaum.

Schraw, G., & Nietfeld, J. (1998). A further test of the general monitoring skill hypothesis. Journal of Educational Psychology, 90, 236-248. https://doi.org/10.1037/0022-0663.90.2.236

Serra, M. J., & Metcalfe, J. (2009). Effective implementation of metacognition. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Handbook of metacognition in education (pp. 278-298). Mahwah, NJ: Erlbaum.

Stankov, L. (2000). Complexity, metacognition, and fluid intelligence. Intelligence, 28, 121-143. https://doi.org/10.1016/S0160-2896(99)00033-1

Stankov, L., & Crawford, J. D. (1996). Confidence judgments in studies of individual differences. Personality and Individual Differences, 21, 971-986. https://doi.org/10.1016/S0191-8869(96)00130-4

Stankov, L., & Lee, J. (2008). Confidence and cognitive test performance. Journal of Educational Psychology, 100, 961-976. https://doi.org/10.1037/a0012546

Stankov, L., Lee, J., Luo, W., & Hogan, D. J. (2012). Confidence: A better predictor of academic achievement than self-efficacy, self-concept and anxiety?. Learning and Individual Differences, 22(6), 747-758. https://doi.org/10.1016/j.lindif.2012.05.013

Tabachnick, B. G., & Fidell, L. S. (2011). Cleaning up your act: Screening data prior to analysis. Using multivariate statistics (6th ed., pp. 60-116). New York, NY: Pearson.

Tricot, A. & Sweller, J. (2014). Domain-specific knowledge and why teaching generic skills does not work. Educational Psychology Review 26, 265–283. https://doi.org/10.1007/s10648-013-9243-1

van der Stel, M., & Veenman, M. V. J. (2010). Development of metacognitive skillfulness: A longitudinal study. Learning and Individual Differences, 20, 220–224. https://doi.org/10.1016/j.lindif.2009.11.005

van der Stel, M., & Veenman, M. V. J. (2014). Metacognitive skills and intellectual ability of young adolescents: A longitudinal study from a developmental perspective. European Journal of Psychology of Education, 29, 117-137. https://doi.org/10.1007/s10212-013-0190-5

Vukman, K. B. (2005). Developmental differences in metacognition and their connections with cognitive development in adulthood. Journal of Adult Development, 12, 211-221. https://doi.org/10.1007/s10804-005-7089-6

Werts, C. E., Linn, R. L., & Joreskog, K. G. (1974). Intraclass reliability estimates: Testing structural assumptions. Educational and Psychological Measurement, 34(1), 25-33. https://doi.org/10.1177/001316447403400104

Winne, P. H., & Nesbit, J. C. (2009). Supporting self-regulated learning with cognitive tools. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Handbook of metacognition in education (pp. 259-277). New York, NY US: Routledge/Taylor & Francis Group.

Zohar, A., & David, A. (2009). Paving a clear path in a thick forest: A conceptual analysis of a metacognitive component. Metacognition & Learning, 4(3), 177-195. https://doi.org/10.1007/s11409-009-9044-6

Descargas

Publicado

2021-02-03

Cómo citar

Gutierrez de Blume, A. P., Schraw, G., Kuch, F., & Richmond, A. S. (2021). Factores de precisión general y de error general en el monitoreo metacognitivo y el papel del tiempo en la tarea de predecir juicios metacognitivos. CES Psicología, 14(2), 179–208. https://doi.org/10.21615/cesp.5494

Número

Sección

Artículos Originales