Prevalencia de pérdida de inserción periodontal en una muestra de adolescentes de 15-19 años en Medellín, Colombia


  • Andrés Duque Universidad CES
  • Mario Macrini Universidad CES
  • Juan Felipe Raigoza Universidad CES
  • Luis Gonzalo Álvarez Universidad CES, Universidad de Antioquia


Introducción y Objetivo: La información epidemiológica acerca de la prevalencia de las enfermedades periodontales en adolescentes en Suramérica es escaza. Un estudio en Chile reportó que el 69,2% de los estudiantes adolescentes entre 12 y 21 años, tenían pérdida del nivel de inserción clínico ≥ 1mm, el 16% ≥ 2mm y el 4,5% ≥3mm. El objetivo de este estudio fue determinar las características epidemiológicas de la pérdida de inserción clínica de una muestra de adolescentes del Municipio de Medellín.


Materiales y métodos: Se realizó un estudio transversal como parte de un estudio multicéntrico sobre prevalencia de pérdida de inserción en Suramérica.  Se seleccionaron aleatoriamente estudiantes entre 15 y 19 años de  escuelas públicas y privadas del municipio de Medellín. Se evaluaron el nivel clínico de inserción (NIC), el  sangrado al sondaje (BoP) y la profundidad clínica de sondaje.


Resultados: Se evaluaron 73 estudiantes con un predominio del género masculino del 52,1%. El sangrado al sondaje y el índice de placa en mujeres fue de 11,1±10,8 y 54,2±26,1 respectivamente, mientras que en  los hombres fue de 15,1±15 y 44,2±21,1. Se  encontró que el 65%  de los hombres y el 60 % de las mujeres tenían pérdida de inserción ≥ 1mm. La prevalencia de pérdida de inserción ≥3 mm fue de 14 % en mujeres.


Conclusión: La prevalencia de pérdida de inserción leve en estudiantes de 15-19 años de colegios públicos y privados de la ciudad de Medellín es alta.



Prevalence of periodontal attachment loss in a sample of adolescents aged 15-19 in Medellin, Colombia

Introduction and objetive: The epidemiological information on the prevalence of periodontal disease in adolescents in South America is scarce. A study in Chile reported that 69.2% of teenage students between 12 and 21 years, had loss of clinical attachment level ≥ 1 mm, 16% had ≥ 2 mm loss and 4.5% ≥3mm. The aim of this study was to determine the epidemiological characteristics of the loss of a clinical sample of adolescents from Medellin insertion.


Materials and method: A cross-sectional study was conducted as part of a multicenter study in South America. Students between 15 and 19 years were randomized to public and private in the city of Medellin. Clinical attachment level (NIC), bleeding on probing (BOP) and clinical probing depth were evaluated.


Results: 73 students were evaluated with a prevalence of 52.1% male. Bleeding on probing and plaque index in women was 11.1 ± 10.8 and 54.2 ± 26.1respectively, while in men was 15.1 ± 15 and 44.2 ± 21, 1, respectively.  It was found that 65% of men and 60% of women had insertion loss ≥ 1mm. The prevalence of attachment loss ≥3 mm was 14% in women.


Conclusion: The prevalence of incipient clinical attachment loss is high in this sample of students aged 15-19.


Key words: periodontal diseases, periodontal attachment loss, periodontal pocket, prevalence.


Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Andrés Duque, Universidad CES

Periodonciasta Periodoncia Pontificia Universidad Javeriana, Magíster en  Epidemiología Universidad CES, Profesor de la Facultad de Odontología

Mario Macrini, Universidad CES


Juan Felipe Raigoza, Universidad CES


Luis Gonzalo Álvarez, Universidad CES, Universidad de Antioquia

Bacteriólogo, Bioestadistico, Magíster en Epidemiologia. Docente

Referencias bibliográficas

Alaboudi AR, Jones GA. Effect of acclimation to high nitrate intakes on some rumen fermentation parameters in sheep. Can J Anim Sci 1985; 65(4): 841-849.

Asanuma N, Iwamoto M, Hino T. Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J Dairy Sci 1999; 82(4): 780-787.

Benchaar C, Calsamiglia S, Chaves AV, Fraser GR, Colombatto D, et al. A review of plant-derived essential oils in ruminant nutrition and production. Anim Feed Sci Technol 2008; 145(1): 209-228.

Blaxter KL, Clapperton JL. Prediction of the amount of methane produced by ruminants. Brit J Nutr 1965; 19(01): 511-522.

Boone DR, Johnson RL, Liu Y. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl Environ Microbiol 1989; 55(7): 1735-1741.

Busquet M, Calsamiglia S, Ferret A, Cardozo PW, Kamel C. Effects of cinnamaldehyde and garlic oil on rumen microbial fermentation in a dual flow continuous culture. J Dairy Sci 2005a; 88(7): 2508-2516.

Busquet M, Calsamiglia S, Ferret A, Carro MD, Kamel C. Effect of garlic oil and four of its compounds on rumen microbial fermentation. J Dairy Sci 2005b; 88(12): 4393-4404.

Busquet M, Calsamiglia S, Ferret A, Kamel C. Plant extracts affect in vitro rumen microbial fermentation. J Dairy Sci 2006; 89(2): 761-771.

Chaves AV, He ML, Yang WZ, Hristov AN, McAllister TA, et al. Effects of essential oils on proteolytic, deaminative and methanogenic activities of mixed ruminal bacteria. Can J Anim Sci 2008; 88(1): 117-122.

Chin KJ, Janssen PH. Propionate formation by Opitutus terrae in pure culture and in mixed culture with a hydrogenotrophic methanogen and implications for carbon fluxes in anoxic rice paddy soil. Appl Environ Microbiol 2002; 68(4): 2089-2092.

Czerkawski JW. Methane production in ruminants and its significance. World Rev Nutr Diet 1969; 11: 240-282.

Czerkawski JW. Fate of metabolic hydrogen in the rumen. Proc Nutr Soc 1972; 31(02): 141-146.

Dawson KA, Rasmussen MA, Allison MJ. Digestive disorders and nutritional toxicity. In: Hobson PN, Stewart CS (eds). The Rumen Microbial Ecosystem. 2nd ed. London: Chapman & Hall; 1997. p. 633-660.

De Haas Y, Windig JJ, Calus MPL, Dijkstra J, De Haan M, et al. Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection. J Dairy Sci 2011; 94(12): 6122-6134.

Deppenmeier U, Müller V. Life close to the thermodynamic limit: how methanogenic archaea conserve energy. Results Probl Cell Differ 2008; 45: 123-152.

Faseleh Jahromi M, Liang JB, Ho YW, Mohamad R, Goh YM, et al. Lovastatin in Aspergillus terreus: Fermented Rice Straw Extracts Interferes with Methane Production and Gene Expression in Methanobrevibacter smithii. BioMed Research International 2013; [acceso: 27 de enero de 2014]. URL:

Finlay BJ, Esteban G, Clarke KJ, Williams AG, Embley TM, et al. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett 1994; 117(2): 157-161.

Fonty G, Williams AG, Bonnemoy F, Morvan B, Withers SE, et al. Effect of Methanobrevibacter sp MF1 Inoculation on Glycoside Hydrolase and Polysaccharide Depolymerase Activities, Wheat Straw Degradation and Volatile Fatty Acid Concentrations in the Rumen of Gnotobiotically-reared Lambs. Anaerobe 1997; 3(6): 383-389.

Galbraith H, Miller TB. Physicochemical effects of long chain fatty acids on bacterial cells and their protoplasts. J App Microbiol 1973; 36(4): 647-658.

Garton GA. The digestion and absorption of lipids in ruminant animals. World Rev Nutr Diet 1967; 7: 225-250.

Hales KE, Cole NA, MacDonald JC. Effects of corn processing method and dietary inclusion of wet distillers grains with solubles on energy metabolism, carbon− nitrogen balance, and methane emissions of cattle. J Anim Sci 2012; 90(9): 3174-3185.

Hammond KJ, Burke JL, Koolaard JP, Muetzel S, Pinares-Patiño CS, et al. Effects of feed intake on enteric methane emissions from sheep fed fresh white clover (Trifolium repens) and perennial ryegrass (Lolium perenne) forages. Anim Feed Sci Technol 2013; 179 (s 1-4): 121-132.

Hammond KJ, Muetzel S, Waghorn GG, Pinares-Patino, CS, Burke JL, et al. The variation in methane emissions from sheep and cattle is not explained by the chemical composition of ryegrass. Proceedings of the 69th Conference of the New Zealand Society of Animal Production; 2009 June 24-26; Canterbury, New Zealand. New Zealand Society of Animal Production; vol. 69, p. 174-178.

Hegarty RS, Gerdes R. Hydrogen production and transfer in the rumen. Rec Adv Anim Nutr 1998; 12: 37-44.

Hino T, Russell JB. Effect of reducing-equivalent disposal and NADH/NAD on deamination of amino acids by intact rumen microorganisms and their cell extracts. Appl Environ Microbiol 1985; 50(6): 1368-1374.

Holter JB, Young AJ. Methane prediction in dry and lactating Holstein cows. J Dairy Sci 1992; 75(8): 2165-2175.

Hubert C, Voordouw G. Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors. Appl Environ Microbiol 2007; 73(8): 2644-2652.

Hungate RE. The rumen microbial ecosystem. Annu Rev Ecol Syst 1975; 6: 39-66.

Hungate RE, Smith W, Bauchop T, Yu I, Rabinowitz JC. Formate as an intermediate in the bovine rumen fermentation. J Bacteriol 1970; 102(2): 389-397.

Hybu Cig Cymru/Meat Promotion Wales. Reducing methane emissions through improved lamb production. Tŷ Rheidol, UK 2011; [acceso: 26 de febrero de 2014]. URL:

Iannotti EL, Kafkewitz D, Wolin MJ, Bryant MP. Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H2. J Bacteriol 1973; 114(3): 1231-1240.

IPCC (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Quin D, Manning M, Chen Z, Marquis M, et al. (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York, pp 212–213.

Iwamoto M, Asanuma N, Hino T. Effect of nitrate combined with fumarate on methanogenesis, fermentation, and cellulose digestion by mixed ruminal microbes in vitro. Anim Sci J 1999; 70(6): 471–478.

Janssen PH. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim Feed Sci Technol 2010; 160(1): 1-22.

Janssen PH, Kirs M. Structure of the archaeal community of the rumen. Appl Environ Microbiol 2008; 74(12): 3619-3625.

Jayanegara A, Leiber F, Kreuzer M. Meta‐analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J Anim Physiol Anim Nutr 2012; 96(3): 365-375.

Johnson DE, Hill TM, Ward GM, Johnson KA, Branine ME, et al. Principle factors varying methane emissions from ruminants and other animals. In: Khalil MAK (ed). Atmospheric Methane: Sources, Sinks, and Role in Global Change. NATO ADI Series Vol. 113. Berlin: Springer-Verlag; 1993. p. 199–229.

Johnson KA, Johnson DE. Methane emissions from cattle. J Anim Sci 1995; 73(8): 2483-2492.

Kamra DN, Agarwal N, Chaudhary LC. Inhibition of ruminal methanogenesis by tropical plants containing secondary compounds. In: Soliva CR, Takahashi J, Kreuzer M (eds). Greenhouse Gases and Animal Agriculture: An Update. International Congress Series No. 1293. The Netherlands: Elsevier; 2006. p. 156-163.

Kappler O, Janssen PH, Kreft, JU, Schink B. Effects of alternative methyl group acceptors on the growth energetics of the O-demethylating anaerobe Holophaga foetida. Microbiology 1997; 143(4): 1105-1114.

Kim BH, Gadd GM. Bacterial physiology and metabolism. 1a ed. Cambridge: Cambridge University Press; 2008.

Klevenhusen F, Zeitz JO, Duval S, Kreuzer M, Soliva CR. Garlic oil and its principal component diallyl disulfide fail to mitigate methane, but improve digestibility in sheep. Anim Feed Sci Technol 2011; 166: 356-363.

Lana RP, Russell JB, Van Amburgh ME. The role of pH in regulating ruminal methane and ammonia production. J Anim Sci 1998; 76(8): 2190-2196.

Latham MJ, Wolin MJ. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Appl Environ Microbiol 1977; 34(3): 297-301.

Laube VM, Martin SM. Conversion of Cellulose to Methane and Carbon Dioxide by Triculture of Acetivibrio cellulolyticus, Desulfovibrio sp., and Methanosarcina barkeri. Appl Environ Microbiol 1981; 42(3): 413-420.

Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ, et al. The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. Plos One 2010; 5(1): 1-17

Leng RA. The potential of feeding nitrate to reduce enteric methane production in ruminants. Report to Department of Climate Change, Commonwealth Government of Australia, Canberra 2008; [acceso: 18 de marzo de 2014]. URL:

Liu H, Wang J, Wang A, Chen J. Chemical inhibitors of methanogenesis and putative applications. Appl Microbiol Biotechnol 2011; 89(5): 1333-1340.

López MC, Ibáñez C, García-Diego FJ, Javier Moya V, Estellés, F, et al. Determination of methane production from lactating goats fed diets with different starch levels. International Livestock Environment Symposium (ILES IX). International Conference of Agricultural Engineering-CIGR-AgEng 2012; [acceso: 20 de abril de 2014]. URL:

López S, Valdes C, Newbold CJ, Wallace RJ. Influence of sodium fumarate addition on rumen fermentation in vitro. Brit J Nutr 1999; 81: 59-64.

Machmüller A, Soliva CR, Kreuzer M. In vitro ruminal methane suppression by lauric acid as influenced by dietary calcium. Can J Anim Sci 2002; 82(2): 233-239.

Marais JP, Therion JJ, Mackie RI, Kistner A, Dennison C. Effect of nitrate and its reduction products on the growth and activity of the rumen microbial population. Brit J Nutr 1988; 59(2): 301-313.

Matsuyama H, Horiguchi K, Takahashi T, Kayaba T, Ishida M, et al. Control of methane production from expiratory gas by ruminal dosing with mechanical stimulating goods in Holstein steer. Asian-Aus J Anim Sci 2000; 13: 215-215.

Miller TL, Wolin MJ. Inhibition of growth of methane-producing bacteria of the ruminant forestomach by hydroxymethylflutaryl-SCoA reductase inhibitors. J Dairy Sci 2001; 84:1445–1448.

Mitsumori M, Sun W. Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Asian-Aus J Anim Sci 2008; 21(1): 144-154.

Moe PW, Tyrrell HF. Methane production in dairy cows. J Dairy Sci 1979; 62(10): 1583-1586.

Moss AR, Jouany JP, Newbold J. Methane production by ruminants: its contribution to global warming. Ann Zootech 2000; 49(3): 231-254.

Müller M. Review Article: The hydrogenosome. J Gen Microbiol 1993; 139(12): 2879-2889.

Müller V, Lemker T, Lingl A, Weidner C, Coskun Ü, et al. Bioenergetics of archaea: ATP synthesis under harsh environmental conditions. J Mol Microbiol Biotechnol 2006, 10(2-4): 167-180.

Murphy MR, Baldwin RL, Koong LJ. Estimation of stoichiometric parameters for rumen fermentation of roughage and concentrate diets. J Anim Sci 1982; 55(2): 411-421.

Murray K, Rodwell V, Bender D, Botham KM, Weil PA, et al. Harper's Illustrated Biochemistry. 29th ed. New York: McGraw-Hill; 2011.

Nagaraja TG, Newbold CJ, Van Nevel CJ, Demeyer DI. Manipulation of ruminal fermentation. In: Hobson PN, Stewart CS (eds). The Rumen Microbial Ecosystem. 2nd ed. London: Blackie Acad and Prof; 1997. p. 523–632.

Navarro-Villa A, O’Brien M, López S, Boland TM, O’Kiely P. In vitro rumen methane output of grasses and grass silages differing in fermentation characteristics using the gas-production technique (GPT). Grass Forage Sci 2012; 68: 228–244.

Newbold CJ, Lassalas B, Jouany JP. The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Lett Appl Microbiol 1995; 21(4): 230-234.

Nováková Z, Blaško J, Hapala I, Šmigáň P. Effects of 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitor pravastatin on membrane lipids and membrane associated functions of Methanothermobacter thermautotrophicus. Folia Microbiol 2010, 55(4): 359-362.

Patra AK, Saxena J. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J Sci Food Agric 2011; 91(1): 24-37.

Paynter MJB, Hungate RE. Characterization of Methanobacterium mobilis, sp. n., isolated from the bovine rumen. J Bacteriol 1968; 95(5): 1943-1951.

Polan CE, McNeill JJ, Tove SB. Biohydrogenation of unsaturated fatty acids by rumen bacteria. J Bacteriol 1964; 88(4): 1056-1064.

Ragsdale SW, Pierce E. Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta 2008; 1784(12): 1873-1898.

Russell JB, Jeraci JL. Effect of carbon monoxide on fermentation of fiber, starch, and amino acids by mixed rumen microorganisms in vitro. Appl Environ Microbiol 1984; 48(1): 211-217.

Sauer FD, Teather RM. Changes in oxidation reduction potentials and volatile fatty acid production by rumen bacteria when methane synthesis is inhibited. J Dairy Sci 1987; 70(9):1835-1840.

Schäfer G, Engelhard M, Müller V. Bioenergetics of the Archaea. Microbiol Mol Biol Rev 1999; 63(3): 570-620.

Schink B. Syntrophic associations in methanogenic degradation. In: Overmann J (ed.). Molecular Basis of Symbiosis. Berlin: Springer; 2006. p.: 1-19

Schink B, Stams AJM. Syntrophism among prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds). The Prokaryotes: an evolving electronic resource for the microbiological community. 3rd ed. New York: Springer-Verlag; 2006. p. 309-335.

Sharp R, Ziemer CJ, Stern MD, Stahl DA. Taxon‐specific associations between protozoal and methanogen populations in the rumen and a model rumen system. FEMS Microbiol Ecol 1998; 26(1): 71-78.

Shibata M, Terada F. Factors affecting methane production and mitigation in ruminants. Anim Sci J 2010, 81(1): 2-10.

Skillman LC, Evans PN, Naylor GE, Morvan B, Jarvis GN, et al. 16S ribosomal DNA-directed PCR primers for ruminal methanogens and identification of methanogens colonising young lambs. Anaerobe 2004; 10(5): 277-285.

Soliva CR, Hindrichsen IK, Meile L, Kreuzer M, Machmüller A. Effects of mixtures of lauric and myristic acid on rumen methanogens and methanogenesis in vitro. Lett Appl Microbiol 2003; 37(1): 35-39.

Takahashi J, Johchi N, Fujita H. Inhibitory effects of sulphur compounds, copper and tungsten on nitrate reduction by mixed rumen micro-organisms. Brit J Nutr 1989; 61(03): 741-748.

Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 2008; 6(8): 579-591.

Ungerfeld EM, Kohn RA. The role of thermodynamics in the control of ruminal fermentation. In: Sejrsen K, Hvelplund T, Nielsen MO (eds). Ruminant physiology: Digestion, metabolism and impact of nutrition on gene expression, immunology and stress. The Netherlands: Wageningen Academic Publishers; 2006. p. 55-85.

Ungerfeld EM, Kohn RA, Wallace RJ, Newbold CJ. A meta-analysis of fumarate effects on methane production in ruminal batch cultures. J Anim Sci 2007; 85(10): 2556-2563.

Ungerfeld EM, Rust SR, Boone DR, Liu Y. Effects of several inhibitors on pure cultures of ruminal methanogens. J Appl Microbiol 2004; 97(3): 520-526.

Ungerfeld EM, Rust SR, Burnett RJ, Yokoyama MT, Wang JK. Effects of two lipids on in vitro ruminal methane production. Anim Feed Sci Technol 2005; 119(1): 179-185.

Ushida K, Ohashi Y, Tokura M, Miyazaki K, Kojima Y. Sulphate reduction and methanogenesis in the ovine rumen and porcine caecum: a comparison of two microbial ecosystems. Dtsch Tieraerztl Wochenschr 1995; 102(4): 154-156.

Van Kessel JAS, Russell JB. The effect of pH on ruminal methanogenesis. FEMS Microbiol Ecol 1996; 20(4): 205-210.

Vogels GD, Hoppe WF, Stumm CK. Association of methanogenic bacteria with rumen ciliates. Appl Environ Microbiol 1980; 40(3): 608-612.

Whitford MF, Teather RM, Forster RJ. Phylogenetic analysis of methanogens from the bovine rumen. BMC Microbiology 2001; 1: 1-5.

Williams AG, Coleman GS. The rumen protozoa. In: Hobson PN, Stewart CS (eds). The Rumen Microbial Ecosystem. 2nd ed. New York: Springer; 1997. p. 77–139.

Wolin MJ, Miller TL. Control of rumen methanogenesis by inhibiting the growth and activity of methanogens with hydroxymethylglutaryl-SCoA inhibitors. Int Congr Ser 2006; 1293: 131-137.

Zhou MI, Hernandez-Sanabria E. Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Appl Environ Microbiol 2009; 75(20): 6524-6533.

Zhou M, Hernandez-Sanabria E. Characterization of variation in rumen methanogenic communities under different dietary and host feed efficiency conditions, as determined by PCR-denaturing gradient gel electrophoresis analysis. Appl Environ Microbiol 2010; 76(12): 3776-3786.




Cómo citar

Duque A, Macrini M, Raigoza JF, Álvarez LG. Prevalencia de pérdida de inserción periodontal en una muestra de adolescentes de 15-19 años en Medellín, Colombia. CES odontol. [Internet]. 17 de diciembre de 2015 [citado 7 de diciembre de 2022];28(2):35-46. Disponible en:



Artículo de Investigación Científica y Tecnológica