Factores asociados a la prevalencia de mucositis periimplantar: estudio retrospectivo de 10 años

Autores/as

  • Sophia Aquije-Siveroni Universidad de San Martin
  • Andreé Cáceres-La Torre Universidad de San Martin de Porres

Resumen

Introducción y objetivo:Los tejidos que soportan los implantes osteointegrados son susceptibles a patologías como la periimplantitisy la mucositis periimplantar. Su detección y tratamiento temprano son importantes para prevenir laprogresión de la enfermedad y que llegue a comprometerse la estabilidad del implante. Por lo tanto, esteestudio retrospectivo tiene como objetivo determinar los factores asociados a la prevalencia de mucositisperiimplantar en pacientes tratados en la Clínica de la Maestría en Periodoncia de la Universidad de SanMartín de Porres.

Materiales y métodos:De 318 historias clínicas correspondientes a un total de 955 implantes colocados entre los años 2001 y2010, se evaluaron 212 implantes dentales colocados en un total de 74 pacientes. Se utilizó la presenciade sangrado al sondaje como parámetro de diagnostico para la mucositis periimplantar.

Resultados:La prevalencia de Mucositis periimplantar obtenida para el total de 212 implantes evaluados fue 58,96%.Adicionalmente, se encontró diferencias estadísticamente significativas al comparar los grupos deimplantes con y sin mucositis periimplantar en relación al nivel de higiene oral.

Conclusión:La prevalencia de mucositis periimplantar en la Clínica de la Maestría en Periodoncia de la Universidadde San Martin de Porres entre los años 2001 y 2010 fue de 58.96%. Además, se encontró asociaciónentre la presencia de mucositis periimplantar y el nivel de higiene oral.

Factors associated with the prevalence of peri-implant mucositis:Retrospective of 10 years

Abstract

Introduction and objective:Tissues supporting osseointegrated implants are susceptible to diseases such as periimplantitis and periimplantmucositis. Early detection and treatment are important to prevent disease progression and lossof implant stability. Therefore, the aim of this retrospective study was determine the factors associatedwith the prevalence of peri-implant mucositis of subjects treated at the Clinic of the Master in Periodonticsat the University of San Martín de Porres.

Materials and methods:318 medical records with a total of 955 implants were placed from 2001 to 2010. Of these, 212 dentalimplants evaluated in a total of 74 medical records were included in this study. We used the presence ofbleeding on probing as a diagnostic parameter for peri-implant mucositis.

Results:The prevalence of peri-implant mucositis obtained for the total of 212 implants was 58,96%. Additionally,statistically significant differences were found when comparing the groups of implants with peri-implantmucositis and without regard to the oral hygiene level.

Conclusion:The prevalence of peri-implant mucositis at the University of San Martin De Porres is 58.96%. It has beenfound statistically significant association between the presence of peri-implant mucositis and oral hygienelevel.

Keywords:Peri-implant mucositis, peri-implant disease, peri-implant lesions.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Sophia Aquije-Siveroni, Universidad de San Martin

Cirujana Dentista, Egresada de la Universidad de San Martin de Porres, Lima, Perú

Andreé Cáceres-La Torre, Universidad de San Martin de Porres

Magister en Periodoncia, Profesor de la Maestría en Periodoncia de la Universidad de San Martin de Porres, Lima, Perú

Referencias bibliográficas

Acherman J. Análisis del estado de alteración y contaminación del humedal Jaboque Bogotá (Colombia) Tesis de pregrado. Pontificia Universidad Javeriana de Bogotá, Bogotá (Colombia), 2007. p. 110.

Adams SM, Brown AM, Goege RW. A quantitative health assessment index for rapid evaluation of fish condition in the field. Trans Am Fish Soc 1993; 122:69–73.

Agnihotri U, Bahadure R, Akarte S. Gill lamellar changes in fresh water fish Channa punctatus due to influence of arsenic trioxide. Biochem Biophys Res Commun 2010; 3: 61-65.

Bano Y, Hasan M. Mercury induced time-dependent alterations in lipid profiles and lipid peroxidation in different body organs of cat-fish Heteropneustes fossilis. J Environ Sci Heal B 1989; 24: 145−166,.

Begum SA, Banu Q, Hoque B. Effect of chromium, cadmium and mercury on the gill histology of Clarias batrachus L. The Chittagong Univ. J. b. sci. 2009; 4(1 &2): 13-23.

Berntssen M, Aatland A, Handy R. Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr. Aquat Toxicol 2003; 65: 55-72.

Burnett KG. Impacts of environmental toxicants and natural variables on the immune sytem of fishes. En: Biochemistry and Molecular Biology of Fishes. Vol. VI. Environmental toxicology, ed. by T. P. Mommsen and T. W. Moon, Elsevier, Amsterdam; 2005. P. 231-253.

Cambier S, Bernard G, Mesmer-Dudons N, Gonzalez P, Rossignol R. At environmental doses, dietary methylmercury inhibits mitochondrial energy metabolism in skeletal muscles of the zebrafish (Danio rerio). Int J Biochem Cell Biol 2009; 41: 791-799.

Das K, Siebert U, Gillet A, Dupont A, Di-Poï C, et al. Mercury immune toxicity in harbour seals: links to in vitro toxicity. Environ Health 2008; 7 (52): 1-17

Drevnick PE, Sandheinrich MB, Oris JT. Increased ovarian follicular apoptosis in fathead minnows (Pimephales promelas) exposed to dietary methylmercury. Aquat Toxicol 2006; 79(1): 49-54.

Durak D, Kalender S, Gokce FU, Demır F, Kalender Y. Mercury chloride-induced oxidative stress in human erythrocytes and the effect of vitamins C and E in vitro. Afr J Biotechnol 2010; 9(4): 488-495

Elia AC, Galarini R, Taticchi MI, Dörr AJ, Mantilacci L. Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicol Environ Saf 2003; 55(2):162-167.

El-Naggar AM, Mahmoud SA; Tayel SI. Bioaccumulation of Some Heavy Metals and Histopathological Alterations in Liver of Oreochromis niloticus in Relation to Water Quality at Different Localities along the River Nile, Egypt. W J Fish & Marine Sci 2009; 1(2): 105-114.

EPA. An Assessment of Potential Mining Impacts on Salmon Ecosystems of Bristol Bay, Alaska. External Peer Review of EPA’s Draft Document. Final Peer Review Report. Contract No. EP-C-07-025 Task Order 155. September 17, 2012.

Fatma AS. Bioaccumulation of Selected Metals and Histopathological Alterations in Tissues of Oreochromis niloticus and Lates niloticus from Lake Nasser, Egypt. Global Veterinaria 2008; 2 (4): 205-218

Ferguson HW. Systemic pathology of fish. 2th ed. 2006. London: Scotian Press. p. 366.

Fernandes C, Fontainhas-Fernandes A, Cabral D, Salgado MA. Heavy metals in wáter, sediment and tissues of Liza saliens from Esmoriz Paramos lagoon, Portugal. Environ Monit Assess 2007; 136: 267-275.

Figueiredo-Fernandes A, Fontaínhas-Fernandes A, Peixoto F, Rocha E, Reis-Henriques MA. Effects of gender and temperatura on oxidative stress enzymes in Nile tilapia Oreochromis niloticus exposed to paraquat. Pest Biochem Physiol 2006; 85: 97-103.

Floyd R. The use of salt in aquaculture. Fact Sheet VM 86. Series of the Department of Large Animal Clinical Sciences, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida 1995; [acceso: 23 de marzo de 2013]. URL:http://edis.ifas.ufl.edu/vm007.

Foulkes EC. Transport of toxic heavy metals across cell membranes. Proc Soc Exp Biol Med 2000; 223: 234-240.

Guerrero E, Restrepo M, Podlesky E. Mercurio: un contaminante ambiental ubicuo y peligroso para la salud humana. Biomédica 1995; 15(3): 144-154.

Gupta N, Dua A. Mercury induced architectural alterations in the gill surface of a fresh water fish, Channa punctatus. J Environ Biol 2002; 23, 383-386.

Hirt LM, Domitrovic HA. Toxicidad y respuesta histopatológica en Cichlasoma dimerus (Pisces, Cichlidae) expuestos a bicloruro de mercurio en ensayos agudos y subletales. Revista Ictiología 2002; 10(1/2): 37-52

Jahed GR, Alli I, Nowroozi E, Nabizadeh R. Mercury contamination in fish and public health aspect: a review. Pak J Nutr 2005; 4(5): 276-281

Kaoud HA, El-Dahshan AR. Bioaccumulation and histopathological alterations of the heavy metals in Oreochromis niloticus fish. Nat Sci 2010; 8(4): 147-156.

Kaoud HA, Mahran MA, Rezk A, Khalf MA. Bioremediation the toxic effect of mercury on liver histopathology, some hematological parameters and enzymatic activity in Nile tilapia, Oreochromis niloticus. Researcher 2012; 4(1): 60-70.

Kaoud HA, Mekawy MM. Bioremediation the Toxic Effect of Mercury-Exposure in NileTilapia (Oreochromis Niloticus) by using Lemna gibba L. J Am Sci 2011; 7(3): 336-343.

Kehring H, Howard B, Malm O. Methylmercury in a predatory fish (Chichla spp.) inhabiting the Brazilian Amazon. Environ Pollut 2008; 154: 68-76

Kim J, Lee J, Kang J. Effect of Inorganic Mercury on Hematological and Antioxidant Parameters on Olive Flounder Paralichthys olivaceus. Fish Aquat Sci 2012; 15(3): 215-220.

Larose C, Canuel R, Lucotte M, Di R. Toxicological effects of methylmercury on walleye (Sander vitreus) and perch (Perca flavescens) from lakes of the boreal forest. Comp Biochem Phys C 2008; 147: 139-149

Leaner JJ, Mason RP. Methylmercury accumulation and fluxes across the intestine of channel catfish, Ictalurus punctatus. Comp Biochem Phys C 2002; 132: 247-259

Low KW, Sin YM. Effects of mercuric chloride and sodium selenite on some immune responses of blue gourami, Trichogaster trichopterus (Pallus). Sci Total Environ 1998; 214: 153-164

Low KW, Sin YM. Effects of mercuric chloride on chemiluminescent response of phagocytes and tissue lysozyme activity in tilapia, Oreochromis aureus. Bull Environ Contam Toxicol 1995a; 54: 302-308.

Low KW, Sin YM. In vitro effect of mercuric chloride and sodium selenite on chemiluminescent response of pronephros cells isolated from tilapia, Oreochromis aureus. Bull Environ Contam Toxicol 1995b; 55: 909-915.

Low KW, Sin YM. In vivo and in vitro effects of mercuric chloride and sodium selenite on some non-specific immune responses of blue gourami, Trichogaster trichopterus (Pallus). Fish Shellfish Immunol 1996; 6: 351–362

Lund BO, Miller DM, Woods JS. Studies on Hg (II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria. Biochem. Pharmacol. 1993; 45: 2017- 2024.

Mallat J. Fish gill structural changes induces by toxicants and other irritants: a statistical review. Can J Fish Aquat Sci 1985; 42: 630-648

Mancera-Rodríguez NJ, Álvarez-León R. Estado del conocimiento de las concentraciones de mercurio y otros metales pesados en peces dulceacuícolas de Colombia. Act Biol Col 2006; 11 (1): 3-23.

Maslyuk S, Dharmaratna D. 2012. Impact of Shocks on Australian Coal Mining. Discussion paper 37/12. Department of Economics. ISSN 1441-5429. 26p

Milaeva ER. The role of radical reactions in organomercurials impact on lipid peroxidation. J Inorg Biochem 2006; 100: 905–915

Mohanty BR, Sahoo, PK. Immune responses and expression profiles of some immune-related genes in Indian major carp, Labeo rohita to Edwardsiella tarda infection. Fish Shellfish Immunol 2010; 28(4): 613-621.

Montaser M, Mahfouz M, El-Shazly S, Abdel-Rahman G, Bakry S. Toxicity of Heavy Metals on Fish at Jeddah Coast KSA: Metallothionein Expression as a Biomarker and Histopathological Study on Liver and Gills. W J Fish & Marine Sci 2010; 2: 174-185

Monteiro DA, Rantin FT, Kalinin AL. Dietary intake of inorganic mercury: bioaccumulation and oxidative stress parameters in the neotropical fish Hoplias malabaricus. Ecotoxicology 2013; 22: 446-456.

Monteiro DA, Rantin FT, Kalinin AL. Inorganic mercury exposure: toxicological effects, oxidative stress biomarkers and bioaccumulation in the tropical freshwater fish matrinxã, Brycon amazonicus (Spix and Agassiz, 1829). Ecotoxicology 2010; 19(1): 105-123.

Muñoz-Escobar EM, Palacio-Baena JA. Efectos del cloruro de mercurio (HgCl2) sobre la sobrevivencia y crecimiento de renacuajos de Dendrosophus bogerti. Actual Biol 2010; 32 (93): 189-197.

Naranjo-Gómez JS, Vargas-Rojas LF, Rondón-Barragán IS. Toxicidad aguda de cloruro de mercurio (HgCl2) en cachama blanca, Piaractus brachypomus. Actual Biol 2013; 35 (98): 85-93.

Nyström T. Role of oxidative carbonylation in protein quality control and senescence. EMBO J 2005; 24: 1311–1317.

OECD. Test No 203: Fish, Acute Toxicity Test. Paris: OECD Publishing 1992; p. 1-9.

Oh S, Kim M, Yi S, Zoh K. Distributions of total mercury and methylmercury in surface sediments and fishes in lake Shihwa, Korea. Sci Total Environ 2010; 408: 1059-1068

Olivero J, Navas V, Pérez A, Solano B, Acosta I, Arguello E, Salas R. Mercury Levels in Muscle of Some Fish Species from the Dique Channel, Colombia. R. Bull Environ Contam Toxicol 1997; 58: 865-870.

Olivero J, Restrepo BJ. El lado gris de la minería del oro: la contaminación con mercurio en el norte de Colombia. Cartagena: Editorial Universitaria; 2002

Olivieri G, BrackCh, Müller-Spahn F, Stähelin HB, Herrmann M, Renard P,. Brockhaus M, Hock C. Mercury Induces Cell Cytotoxicity and Oxidative Stress and Increases beta-Amyloid Secretion and tau phosphorylation in SHSY5Y neuroblastoma Cells. J Neurochem 2000; 74: 231–236.

Patnaik BB, Roy A, Agarwal S, Bhattacharya S. Induction of oxidative stress by non-lethal dose of mercury in rat liver: possible relationships between apoptosis and necrosis. J Environ Biol 2010; 31(4):413-6.

Paul I, Mandal C, Mandal C. Effect of environmental pollutants on the C-reactive protein of a freshwater major carp, Carla catla. Dev Comp Immunol1998; 22: 519-532.

Peña JD. Minería y medio ambiente en Colombia. Tesis Especialización en Gerencia del Medio Ambiente y Prevención de Desastres, Universidad Sergio Arboleda. Bogotá. 2003, 150p

Porter CM, Janz DM. Treated municipal sewage discharge affects multiple levels of biological organization in fish. Ecotoxicol Environ Saf 2003; 54: 199-206.

Ravichandran M. Interactions between mercury and dissolved organic matter-a review. Chemosphere 2004; 55:319-331

Ribeiro CA, Belger L, Pelletier B, Rouleauc C. Histopathological evidence of inorganic mercury and methyl mercury toxicity in the arctic charr (Salvelinus alpinus). Environmental Research 2002; 90: 217–225.

Robles R. Efectos de la minería moderna en tres regiones del Perú. Revista de Antropología 2003; 1: 31-70

Rondón-Barragán IS, Pardo-Hernández D, Eslava-Mocha PR. Efectos de los herbicidas sobre el sistema inmune en peces. Revista Complutense de Ciencias Veterinarias 2010; 4(1): 1-22.

Sánchez-Dardon J, Voccia I, Hontela A, Anderson P, Brousseau P, Blakely B, Boermans H, Fournier M. Immunotoxicity of cadmium, zinc and mercury after in vivo exposure, alone or in mixture in rainbow trout (Oncorhynchus mykiss). Dev. Comp. Immunol.1997; 21:133

Sarmento A, Guilhermino L, Afonso A. Mercury chloride effects on the function and cellular integrity of sea bass (Dicentrarchus labrax) head kidney macrophages. Fish Shellfish Immunol 2004; 17: 489-498

Sary AA, Mohammadi M. Comparison of Mercury and Cadmium Toxicity in Fish species from Marine water. Res J Fish & Hydrobiol 2012; 7(1), 14-18.

Sheir SK, Handy RD, Galloway TS. Tissue injury and cellular immune responses to mercuric chloride exposure in the common mussel Mytilus edulis: modulation by lipopolysaccharide. Ecotoxicol Environ Saf 2010; 73 (6): 1338-1344.

Tizard I. Veterinary Immunology: an introduction. Saunders Company. 9a ed. 2012. p 568

Van der Oost R, Beyer J, Vermeulen NPE. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Phar 2003; 13: 57-149.

Verep B, SibelBesli E, Altionk I, Mutlu C. Assessment of Mercuric chloride toxicity on Rainbow trouts and cubs. Pak J. Biol Sci. 2007; 10: 1098-1102.

Verlecar XN, Jena KB, Chainy GBN. Biochemical markers of oxidative stress in Pernaviridis exposed to mercury and temperature. Chem Biol Interac 2007; 167: 219–226.

Verlecar XN, Jena KB, Chainy GBN. Modulation of antioxidant defences in digestive gland of Perna viridis (L.), on mercury exposures. Chemosphere 2008; 71: 1977–1985

Verlecar X, Das P, Jena K, Maharana D, Desai S. Antioxidant responses in Mesopodopsis zeylanica at varying salinity to detect mercury influence in culture ponds. Turk J Biol 2012; 36:711-718.

Vieira LR, Gravato C, Soares A, Morgado F, Guilhermino L. Acute effects of copper and mercury on the estuarine fish Pomatoschistus microps: Linking biomarkers to behavior. Chemosphere 2009; 76:1416-1427

Voccia I., K. Krzystyniak, M. Dunier, D. Flipo and M. Fournier. In vitro mercury-related cytotoxicity and functional impairment of the immune cells of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 1994; 29: 37-48.

Xu X, Weber D, Carvan MJ, Coppens R, Lamb C, Goetz S, Schaefer LA. Comparison of neurobehavioral effects of methylmercury exposure in older and younger adult zebrafish (Danio rerio). NeuroToxicology 2012; 33:1212-1218

Yanong RPE. Necropsy techniques for fish. En: Echols S, editor. Practical gross necropsy of exotic animal species. Seminars in avian and exotic pet medicine. Philadelphia (U. S. A.): W. B. Saunders Co 2003. p. 89-105.

Descargas

Publicado

2015-08-10

Cómo citar

1.
Aquije-Siveroni S, Cáceres-La Torre A. Factores asociados a la prevalencia de mucositis periimplantar: estudio retrospectivo de 10 años. CES odontol. [Internet]. 10 de agosto de 2015 [citado 12 de agosto de 2022];28(1):41-55. Disponible en: https://revistas.ces.edu.co/index.php/odontologia/article/view/3489

Número

Sección

Artículo de Investigación Científica y Tecnológica