Padronização da PCR múltipla em tempo real para o diagnóstico de AIDS e leucemia em Felis silvestris catus

Autores

  • Claudia Velilla Universidad CES
  • Juliana Martínez Universidad CES
  • María Soledad González Universidad CES

DOI:

https://doi.org/10.21615/cesmvz.15.1.3

Palavras-chave:

Diagnóstico molecular, leucemia felina, PCR múltiplo, AIDS felina

Resumo

Doenças causadas por vírus como AIDS e leucemia são altamente prevalentes em gatos domésticos, devido a sua facilidade de transmissão com sinais clínicos semelhantes a outras infecções que podem causar dificuldades no diagnóstico, portanto devem ser analisados por exames laboratoriais; Os testes atualmente disponíveis têm algumas desvantagens, portanto uma PCR em tempo real múltipla foi padronizada com sondas Taqman para a detecção de infecção pelo vírus da imunodeficiência felina (FIV), vírus da leucemia felina (VLFe) ou misto . A sensibilidade (0,53/0,26) e a especificidade (0,46 / 0,74) para leucemia e AIDS foram calculadas, respectivamente, com a metodologia de Broemeling, que considera que o teste de referência com o qual é comparado não é um referência verdadeira (teste de ouro), de acordo com esses resultados, conclui-se que é necessário aumentar o tamanho da amostra, entretanto, a PCR múltipla é uma metodologia muito sensível, foi validada na forma silico e apresentou resultados congruentes quando realizada in vivo.

Downloads

Não há dados estatísticos.

Referências

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. “Basic local alignment search tool.” J. Mol. Biol. 1900; 215: 403-410.

Arjona A., Barquero N., Domenech A., Tejerizo G., Collado V., et al. Evaluation of a novel nested PCR for the routine diagnosis of feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV). J Feline Med Surg. 2007; 9 (1): 14-22.

Arjona, A., Escolar, E., Soto, I., Barquero N., Martin, D., et al. Seroepidemiological Survey of Infection by Feline Leukemia Virus and Immunodeficiency Virus in Madrid and Correlation with Some Clinical Aspects. J Clin Microbiol. 2000; 38 (9): 3448-3449.

Broemeling, L. D, Advanced Bayesian methods for medical test accuracy. Diag-nostics (Basel). 2011 Dec; 1 (1): 1-35.

Bryan Kestenbaum. Epidemiology and Biostatistics. New York, NY: Springer New York; 2009.

Dong J., Olano J. P., McBride J. W., Walker D. H. Emerging Pathogens: Challenges and Successes of Molecular Diagnostics. J Mol Diagn. 2008; 10 (3): 185-197.

Gautam R, Mijatovic-Rustempasic S, Esona MD, Tam KI, Quaye O, Bowen MD. One-step multiplex real-time RT-PCR assay for detecting and genotyping wild-type group A rotavirus strains and vaccine strains (Rotarix® and RotaTeq®) in stool samples. PeerJ. 2016; 4:e1560.

Greggs, W. M., Clouser, C. L., Patterson, S. E., & Mansky, L. M. Discovery of drugs that possess activity against feline leukemia virus. J Gen Virol. 2012; 93 (4): 900-905.

Hernández C, Cucunubá Z, Flórez C, Olivera M, Valencia C, et al. Molecular Diag-nosis of Chagas Disease in Colombia: Parasitic Loads and Discrete Typing Units in Patients from Acute and Chronic Phases. PLoS Negl Trop Dis 10 (9): e0004997.

Hong Naa, Willem Huismanb, Kristofor K., Ellestada Tom R. Phillips, Christopher Powerad. Domain -and nucleotide- specific Rev response element regulation of feline immunodeficiency virus production. Virology, 2010; 404 (2): 246-260.

IDEXX Laboratories, “Feline Leukemia Virus Antigen-Feline Immunodeficiency Virus Antibody Test Kit”, Test insert, Westbrook, Maine 2014; https://www.idexx.com/corporate/home.html.

J. Hoorfar, B. Malorny, A. Abdulmawjood, N. Cook, M. Wagner et al. Practical Consi-derations in Design of Internal Amplification Controls for Diagnostic PCR Assays. J Clin Microbiol, 2004; 42 (5): 1863-1868.

Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human genome browser at UCSC. Genome Res. 2002; 12 (6): 996-1006

Kenyon, J. C., Lever A. M. L. The Molecular Biology of Feline Immunodeficiency Virus (FIV). Viruses 2011; 3 (12): 2192-2213.

Kim WS, Chong CK, Kim HY, Lee GC, Jeong W, et al. Development and clinical evaluation of a rapid diagnostic kit for feline leukemia virus infection. J Vet Sci, 2014; 15 (1): 91-97.

Little, S., Bienzle, D., Carioto, L., Chisholm, H., O’Brien, E. et al. Feline leukemia virus and feline immunodeficiency virus in Canada: Recommendations for testing and management. Can Vet J., 2011; 52 (8): 849-855.

Little, S., Sears, W., Lachtara, J., Bienzle D., Seroprevalence of feline leukemia virus and feline immunodeficiency virus infection among cats in Canada. Can Vet J., 2009; 50 (6): 644-648.

Mathevon Y, Foucras G, Falguières R, Corbiere F. Estimation of the sensitivity and specificity of two serum ELISAs and one fecal qPCR for diagnosis of paratuber-culosis in sub-clinically infected young-adult French sheep using latent class Bayesian modeling. BMC Vet Res. 2017; 13 (1) 230.

Beall MJ, Buch J, Cahill RJ, Clark G, Hanscom J, Estrada M, et al. Evaluation of a quantitative enzyme-linked immunosorbent assay for feline leukemia virus p27 antigen and comparison to proviral DNA loads by real-time polymerase chain reaction. Comp Immunol Microbiol Infect Dis. 2019; 67: 101348.

Mohammadi H., Bienzle D. Pharmacological Inhibition of Feline Immunodeficiency Virus (FIV). Viruses, 2012; 4 (12): 708-724.

Munro H. J., Berghuis L., Lang A. S., Rogers L., Whitney H. Seroprevalence of feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) in shelter cats on the island of Newfoundland, Canada. Can J Vet Res., 2014; 78 (2): 140-144.

Murphy B., Vapniarsky N., Hillman C., Castillo D., McDonnel S., Moore P., Sparger E. E., et al. FIV establishes a latent infection in feline peripheral blood CD4+ T lymphocytes in vivo during the asymptomatic phase of infection. Retrovirology, 2012; 9 (1): 12.

Nunes MS, T Heuer C, Marshall J, Sanchez J, Thornton R, et al. epiR: Tools for the Analysis of Epidemiological Data. 2015 [cited 2015 Nov 20]. URL: https://cran.r-project.org/web/packages/epiR/index.html.

O_UZO_LU1 T., MUZ D. Prevalences of Feline Coronavirus (FCoV), Feline Leu-kaemia Virus (FeLV), Feline Immunodeficiency Virus (FIV) and Feline Parvovirus (FPV) among domestic cats in Ankara, Turkey. Med Vet. 2013; 164 (11): 511-516.

Perhari_ M., Bi_in M., Stare_ina V., Milas Z., Turk N., et al. Phylogenetic characte-rization of feline immunodeficiency virus in naturally infected cats in Croatia in-dicates additional heterogeneity of subtype B in Europe. Arch Virol. 2016; 161(9): 2567-2573.

PrimerQuest® program, IDT, Coralville, USA. Retrieved 12 December, 2012. http://www.idtdna.com/Scitools. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human genome browser at UCSC. Ge-nome Res. 2002 Jun;12 (6): 996-1006.

Qurollo B. A., Riggins D., Comyn A., Zewde M. T., Breitschwerdt E. B. Development and Validation of a Sensitive and Specific sodB-Based Quantitative PCR Assay for Molecular Detection of Ehrlichia Species. J Clin Microbiol. 2014; 52 (11): 4030-4032.

R Core Team, R: A language and environment for statistical computing. R Foun-dation for Statistical Computing, Vienna, Austria. 2015 [cited 2015 Nov 20]. URL: http://www.R-project.org/.

Radstrom P, Lofstrom C, Lovenklev M, Knutsson R, Wolffs P. Strategies for Over-coming PCR Inhibition. Cold Spring Harb Protoc. 2008; 2008(4): pdb.top20-pdb.top20.

Rådström P, Knutsson R, Wolffs P, Lövenklev M, Löfström C. Pre-PCR Processing: Strategies to Generate PCR-Compatible Samples. Mol Biotechnol. 2004;26(2): 133-46.

Ramírez H, Autran M, García MM, Carmona MÁ, Rodríguez C, Martínez HA. Geno-typing of feline leukemia virus in Mexican housecats. Arch Virol. 2016; 161 (4): 1039-45.

Rohn, J., Linenberger M. L., Hoover E. A., Overbaugh J. Evolution of Feline Leu-kemia Virus Variant Genomes with Insertions, Deletions, and Defective Envelope Genes in Infected Cats with Tumors. J Virol 1994; 68: 2458-2467.

Sales M., Fonseca Junior, A. A., Orzil, L., Padilha Alencar, A., Silva, M. R., et al. Validation of a real-time PCR assay for the molecular identification of Mycobac-terium tuberculosis, Braz J Microbiol. 2014; 45 (4): 1363-1369.

Sonntag O. Haemolysis as interference factor in clinical chemistry. J Clin Chem Clin Biochem. 1986; 24: 127-39.

Tandon R, Cattori V, Willi B, Lutz H, Hofmann-Lehmann R. Quantification of endoge-nous and exogenous feline leukemia virus sequences by real-time PCR assays. Vet Immunol Immunopathol. 2008;123 (1-2):129-33.

Velilla Salim, Tique Vaneza, Sanchez Alba, Alvarez Leonardo, Rios Rodrigo. Sero-prevalencia del virus de leucemia e inmunodeficiencia felina en gatos de Montería, Córdoba. Rev. Med. Vet. Zoot. 2009; 56: 85-94.

Westman ME, Malik R, Hall E, Sheehy PA, Norris JM. Comparison of three feline leukaemia virus (FeLV) point-of-care antigen test kits using blood and saliva. Comp Immunol Microbiol Infect Dis. 2017; 50: 88-96.

Westman ME, Malik R, Norris JM. Diagnosing feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV) infection: an update for clinicians. Aust Vet J. 2019; 97 (3): 47-55.

Zhou, X., McClish, D. K., Obuchowski N. A, Statistical methods in diagnostic medicine 2nd ed. Hoboken, N.J: Wiley; 2011.

Publicado

2020-05-01

Como Citar

Velilla, C., Martínez, J., & Soledad González, M. (2020). Padronização da PCR múltipla em tempo real para o diagnóstico de AIDS e leucemia em Felis silvestris catus. CES Medicina Veterinaria Y Zootecnia, 15(1), 31–43. https://doi.org/10.21615/cesmvz.15.1.3

Edição

Seção

ARTÍCULO ORIGINAL DE INVESTIGACIÓN
Métricas do artigo
Vistas abstratas
Visualizações da cozinha
Visualizações de PDF
Visualizações em HTML
Outras visualizações