El “barbering”: un problema frecuente en ratones de laboratorio

Autores/as

  • Juliana Alejandra Hincapié Fundación Universitaria Agraria de Colombia - Uniagraria
  • María Lucía Correal Suárez Pontificia Universidad Javeriana
  • Manuel Eduardo Góngora Pontificia Universidad Javeriana

DOI:

https://doi.org/10.21615/cesmvz.6776

Palabras clave:

alopecia, bioterio, comportamiento, enriquecimiento, tricotilomanía

Resumen

El barbering es una conducta que consiste en halar o recortar el pelo y en algunos casos incluso ingerirlo. Este comportamiento ha sido reportado tanto en el ser humano como en otras especies, no obstante, su presentación en ratones de laboratorio es frecuente en algunos linajes, genera impacto sobre su bienestar y la fiabilidad de los resultados de investigación, siendo un problema destacado en los bioterios de ratones. Al realizar una revisión de literatura disponible sobre esta condición, se identifican múltiples causas, entre estas, deficiencias en el enriquecimiento ambiental, alteraciones de manejo, estrés, conductas aprendidas, ansiedad y dominancia, así como causas genéticas haciendo que algunas cepas, linajes y modelos genéticamente modificados sean más susceptibles al barbering y ayudando a facilitar la comprensión de rutas metabólicas involucradas en esta condición. La etiología múltiple del barbering permite abordar opciones de manejo orientadas hacia la intervención ambiental y algunas estrategias farmacológicas que podrían ser útiles para reducir su incidencia y los problemas de salud y desempeño reproductivo asociados.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Juliana Alejandra Hincapié, Fundación Universitaria Agraria de Colombia - Uniagraria

Fundación Universitaria Agraria de Colombia (Uniagraria), Cundinamarca, Colombia. 

María Lucía Correal Suárez, Pontificia Universidad Javeriana

Unidad de Biología Comparativa. Pontificia Universidad Javeriana, Bogotá, Colombia. 

Manuel Eduardo Góngora, Pontificia Universidad Javeriana

Unidad de Biología Comparativa. Pontificia Universidad Javeriana, Bogotá, Colombia. 

Referencias bibliográficas

Bechard A, Meagher R, Mason G. Environmental enrichment reduces the likelihood of alopecia in adult C57BL/6J mice. J Am Assoc Lab Anim Sci 2011; 50 (2): 171-4.

Bocca W, Rezende V. Fenômeno de barbering: novos conceitos sobre um antigo problema. RESBCAL 2012; 1 (3): 279-85.

Bordnick PS, Thyer BA, Ritchie BW. Feather picking disorder and trichotillomania: An avian model of human psychopathology. J Behav Ther Exp Psychiatry 1994; 25 (3): 189-96.

Bresnahan JF, Kitchell BB, Wildman M. Facial hair barbering in rats. Lab Anim Sci 1983; 33 (3): 290-1.

Canavello PR, Cachat JM, Hart PC, Murphy, Dennis L.Kalueff A V. Behavioral phenotyping of mouse grooming and barbering. En: Crusio WE, Sluyter F, Gerlai RT, Pietropaolo S. Behavioral Genetics of the Mouse. 1ª ed. UK: Cambridge University Press; 2013. p. 195-204.

Cardalda CA. Porfobilinógeno- deaminasa de glándula de Harder de rata: Purificación, propiedades y secuenciación. Tesis doctoral. Universidad de Buenos Aires 1996. URL: https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n2898_Cardalda.pdf

Casarotto PC, Biojone C, Montezuma K, Cunha FQ, Joca SRL, Castren E, et al. Inducible nitric oxide synthase (NOS2) knockout mice as a model of trichotillomania. PeerJ 2018; 4 (e4635): 1-13.

Chen SK, Tvrdik P, Peden E, Cho S, Wu S, Spangrude G, et al. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 2010; 141 (5): 775-85.

Clark L, Schein M. Activities associated with conflicto behaviour in mice. Anim Behav 1966; 14: 44-9.

Etheridge SL, Ray S, Li S, Hamblet NS, Lijam N, Tsang M, et al. Murine dishevelled 3 functions in redundant pathways with dishevelled 1 and 2 in normal cardiac outflow tract, cochlea, and neural tube development. PLoS Genet 2008; 4 (11): e1000259.

Feusner J, Hembacher B, Phillips K. The mouse who couldn’t stop washing: Pathologic grooming in animals and humans. CNS Spectr 2009; 14 (9): 503-13.

Flanigan TJ, Xue Y, Rao SK, Dhanushkodi A, McDonald MP. Abnormal vibrissa-related behavior and loss of barrel field inhibitory neurons in 5xFAD transgenics. Genes Brain Behav 2014; 13 (5): 488-500.

Gannon AL, O’Hara L, Mason JI, Rebourcet D, Smith S, Traveres A, et al. Ablation of glucocorticoid receptor in the hindbrain of the mouse provides a novel model to investigate stress disorders. Sci Rep 2019; 9 (1): 1-13.

Garner JP, Dufour B, Gregg LE, Weisker SM, Mench JA. Social and husbandry factors affecting the prevalence and severity of barbering (“whisker trimming”) by laboratory mice. Appl Anim Behav Sci 2004; 89 (3-4): 263-82.

Garner JP, Thogerson CM, Dufour BD, Würbel H, Murray JD, Mench JA. Reverse-translational biomarker validation of Abnormal Repetitive Behaviors in mice: An illustration of the 4P’s modeling approach. Behav Brain Res 2012; 219 (2): 189-96.

Garner JP, Weisker SM, Dufour BD, Mench JA. Barbering (fur and whisker trimming) by laboratory mice as a model of human trichotillomania and obsessive-compulsive spectrum disorders. Comp Med 2004; 54: 216-24.

Garner JP. Stereotypies and other abnormal repetitive behaviors: Potential impact on validity, reliability, and replicability of scientific outcomes. ILAR J 2005; 46 (2): 106-17.

Gaskill BN, Garner JP. Stressed out: Providing laboratory animals with behavioral control to reduce the physiological effects of stress. Lab Anim (NY) 2017; 46 (4): 142-5.

Giménez-Llort L. Conducta social, anidación y respuesta a antipsicóticos Atípicos en el modelo triple transgénico 3xtg-AD para la Enfermedad de alzheimer. Tesis Doctoral. Universitat Autònoma de Barcelona; 2012. URL: https://www.tdx.cat/handle/10803/117537#page=1

Gouveia K, Hurst JL. Reducing Mouse Anxiety during Handling: Effect of Experience with Handling Tunnels. PLoS One 2013; 8 (6): e66401.

Greer JM, Capecchi MR. Hoxb8 Is Required for Normal Grooming Behavior in Mice. Neuron 2002; 33 (1): 23-34.

Gross AN, Richter SH, Engel AKJ, Würbel H. Cage-induced stereotypies, perseveration and the effects of environmental enrichment in laboratory mice. Behav Brain Res 2012; 234 (1): 61-8.

Hill RA, McInnes KJ, Gong ECH, Jones MEE, Simpson ER, Boon WC. Estrogen Deficient Male Mice Develop Compulsive Behavior. Biol Psychiatry 2007; 61 (3): 359-66.

ILAR. Guide for The Care and Use of Laboratory Animals. 8ª ed. EUA: The National Academic Press; 2011.

Kalueff AV, Lou YR, Laaksi I, Tuohimaa P. Increased grooming behavior in mice lacking vitamin D receptors. Physiol Behav 2004; 82 (2-3): 405-9.

Kalueff AV, Minasyan A, Keisala T, Shah ZH, Tuohimaa P. Hair barbering in mice: Implications for neurobehavioural research. Behav Processes 2006; 71 (1): 8-15.

Kalueff AV, Tuohimaa P. Contrasting grooming phenotypes in C57Bl/6 and 129S1/SvImJ mice. Brain Res 2004; 1028 (1): 75-82.

Ko GM, Luca RR, Oliveira GM. Camundongo de Laboratório. Cuidado e Manejo Animais Laboratório 2017; May: 169-99.

Koh HY, Kim D, Lee J, Lee S, Shin HS. Deficits in social behavior and sensorimotor gating in mice lacking phospholipase Cβ1. Genes Brain Behav 2008; 7(1): 120-8.

Kurien BT, Gross T, Scofield RH. Barbering in mice: A model for trichotillomania. Br Med J 2005; 331 (7531): 1503-5.

Kyzar EJ, Pham M, Roth A, Cachat J, Green J, Gaikwad S, et al. Alterations in grooming activity and syntax in heterozygous SERT and BDNF knockout mice: The utility of behavior-recognition tools to characterize mutant mouse phenotypes. Brain Res Bull. 2012; 89 (5-6): 168-76.

Lawson G. Etiopathogenesis of mandibulofacial and maxillofacial abscesses in mice. Comp Med 2010; 60 (3): 200-4.

Lijam N, Paylor R, McDonald MP, Crawley JN, Deng CX, Herrup K, et al. Social interaction and sensorimotor gating abnormalities in mice lacking Dvl1. Cell 1997; 90 (5): 895-905.

Long S. Hair-nibbling and whisker-trimming as indicators of social hierarchy in mice. Anim Behav 1972; 20: 10-2.

Melenchon F, Collins B, Bravo A. Manejo de los animales de experimentación. Santiago de Compostela; 2018. URL: https://libraria.xunta.gal/es/manejo-de-los-animales-de-experimentacion

Mertens S, Vogt MA, Gass P, Palme R, Hiebl B, Chourbaji S. Effect of three different forms of handling on the variation of aggression-associated parameters in individually and group-housed male C57BL/6NCrl mice. PLoS One 2019; 14 (4): 1-19.

Militzer K, Wecker E. Behaviour-associated alopecia areata in mice. Lab Anim (NY) 1986; 20 (1): 9-13.

Moody CM, Paterson EA, Leroux-Petersen D, Turner P V. Using paper nest pucks to prevent barbering in C57BL/6 Mice. J Am Assoc Lab Anim Sci 2021; 60 (2): 133-8.

Moreno Ávila CL, Limón-Pacheco JH, Giordano M, Rodríguez VM. Chronic Exposure to Arsenic in Drinking Water Causes Alterations in Locomotor Activity and Decreases Striatal mRNA for the D2 Dopamine Receptor in CD1 Male Mice. J Toxicol 2016; 2016(ID4763434): 1-10.

Neves S, Moura F, Duarte L, Alves R, Saplutto R, Oliveira R. Manual de cuidados e procedimentos com animais de laboratório do Biotério de Produção e Experimentação da FCF-IQ/USP. 1ª ed. Brasil: USP; 2013. URL: http://www.fo.usp.br/wp-content/uploads/Manual-Cuidados-com-Animais.pdf

Pereda de Pablo, D. Estudio conductual, metabólico y de homeostasis vascular en ratones carentes de cromograninas. Tesis doctoral. España. Universidad de la Laguna. 2013. URL: https://riull.ull.es/xmlui/handle/915/61

Pinhal CM, van den Boom BJG, Santana-Kragelund F, Fellinger L, Bech P, Hamelink R, et al. Differential Effects of Deep Brain Stimulation of the Internal Capsule and the Striatum on Excessive Grooming in Sapap3 Mutant Mice. Biol Psychiatry 2018; 84 (12): 917-25.

Reeves SL, Fleming KE, Zhang L, Scimemi A. M-Track: A New Software for Automated Detection of Grooming Trajectories in Mice. PLoS Comput Biol 2016; 12 (9): 1-19.

Reinhardt V. Hair pulling: a review. Lab Anim 2005; 39: 361-9.

Rienecker KDA, Chavasse AT, Moorwood K, Ward A, Isles AR. Detailed analysis of paternal knockout Grb10 mice suggests effects on stability of social behavior, rather than social dominance. Genes Brain Behav 2020; 19 (1): 1-9.

Sarna JR, Dyck RH, Whishaw IQ. The Dalila effect: C57BL6 mice barber whiskers by plucking. Behav Brain Res 2000; 108 (1): 39-45.

Strozik E, Festing M. Whisker trimming in mice. Lab Anim 1981; 15: 309-12.

Sugimoto H, Ikeda K, Kawakami K. ATp1a3-deficient heterozygous mice show lower rank in the hierarchy and altered social behavior. Genes Brain Behav 2018; 17 (5): e12435.

Sundberg J. Handbook of mouse mutations with skin and hair abnormalities, animal models and biomedical tools. 1ª ed. EUA: CRC Press; 1994.

Thompson SL, Welch AC, Ho EV, Bessa JM, Portugal-Nunes C, Morais M, et al. Btbd3 expression regulates compulsive-like and exploratory behaviors in mice. Transl Psychiatry 2019; 9 (1): 222.

Torres-Lista V, Giménez-Llort L. Vibrating tail, digging, body/face interaction, and lack of barbering: Sex-dependent behavioral signatures of social dysfunction in 3xTg-AD mice as compared to mice with normal aging. J Alzheimer’s Dis 2019; 69 (4): 969-77.

Tynes VV. Behavioral Dermatopathies in Small Mammals. Vet Clin North Am - Exot Anim Pract 2013; 16 (3): 801-20.

Vieira D, Lossie A, Lay D, Radcliffe J, Garner J. Preventing, treating, and predicting barbering: A fundamental role for biomarkers of oxidative stress in a mouse model of Trichotillomania. PLoS One 2017; 12 (4): e0175222.

Descargas

Publicado

2022-11-01

Cómo citar

Hincapié, J. A., Correal Suárez, M. L., & Eduardo Góngora, M. (2022). El “barbering”: un problema frecuente en ratones de laboratorio. CES Medicina Veterinaria Y Zootecnia, 17(2), 64–79. https://doi.org/10.21615/cesmvz.6776
Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas

Algunos artículos similares: