Asociación de polimorfismos en los genes CAPN y CAST con propiedades fisicoquímicas de la carne bovina: una revisión

Autores/as

DOI:

https://doi.org/10.21615/cesmvz.16.1.1

Palabras clave:

bovino, pH, sistema proteolítico, calidad sensorial, terneza, CRA, manejo post mortem

Resumen

Las propiedades fisicoquímicas como terneza, color, jugosidad, sabor, marmoleo, pH y capacidad de retención de agua, son consideradas como los atributos que tienen mayor importancia en la calidad de la carne. El manejo pos mortem influye en el funcionamiento del sistema proteolítico de las enzimas μ-calpaínas y calpastatinas, que están codificadas por los genes CAPN1 y CAST, respectivamente. Esta revisión muestra las asociaciones de los polimorfismos CAPN1 y CAST con el fin de explicar las propiedades fisicoquímicas antes mencionadas, que determinan las características relacionadas con la calidad de la carne. Existen polimorfismos de CAPN1 y CAST asociados a propiedades fisicoquímicas particulares de la carne, pero no todos los polimorfismos se asocian con las propiedades mencionadas. La actividad del sistema proteolítico de las enzimas varía según el manejo peri y post mortem. La presencia o ausencia de un polimorfismo varía entre razas. Por consiguiente, las asociaciones de polimorfismos de nucleótido simple con las propiedades fisicoquímicas de la carne mencionadas en esta revisión podrían ayudar a mejorar los indicadores de calidad de la carne bovina.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

José Américo Saucedo Uriarte, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas

Doctorado en Ciencias para el Desarrollo Sustentable de la Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas. 

Ilse Silvia Cayo Colca, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas

Escuela de Posgrado de la Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas. 

Clavel Diaz Quevedo, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas

Doctorado en Ciencias para el Desarrollo Sustentable de la Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas.

Rainer Marco López Lapa, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas

Laboratorio de Fisiología Molecular de la Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas. 

Referencias bibliográficas

Abril M, Campo MM, Önenç A, Sanudo C, Albertí P, Negueruela AI. Beef colour evolution as a function of ultimate pH. Meat Sci 2001; 58(1): 69–78. https://doi.org/10.1016/S0309-1740(00)00133-9

Albrecht E, Teuscher F, Ender K, Wegner J. Growth-and breed-related changes of muscle bundle structure in cattle. J Anim Sci 2006: 84(11): 2959–2964. https://doi.org/10.2527/jas.2006-345

Ángel-Marín PA, Cardona-Cadavid H, Cerón-Muñoz MF. Genómica en la producción animal. Rev Colombiana Cienci Anim 2013; 5(2): 497–518.

Avilés C, Juárez M, Peña F, Domenech V, Clemente I, Molina A. Association of single nucleotide polymorphisms in CAPN1 and CAST genes with beef tenderness from Spanish commercial feedlots. Czech J Anim Sci 2013; 58(10): 479–487. https://doi.org/10.17221/6997-CJAS

Beak SH, Park SJ, Fassah DM, Kim HJ, Kim M, Jo C, et al. Relationships among carcass traits, auction price, and image analysis traits of marbling characteristics in Korean cattle beef. Meat Sci 2021; 171: 108268. https://doi.org/10.1016/j.meatsci.2020.108268

Braz CU, Taylor JF, Decker JE, Bresolin T, Espigolan R, Garcia DA, et al. Polymorphism analysis in genes associated with meat tenderness in Nelore cattle. Meta Gene 2018; 18: 73–78. https://doi.org/10.1016/j.mgene.2018.08.002

Calvo JH, Iguácel LP, Kirinus JK, Serrano M, Ripoll G, Casasús I, et al. A new single nucleotide polymorphism in the calpastatin (CAST) gene associated with beef tenderness. Meat Sci 2014; 96(2): 775–782. https://doi.org/10.1016/j.meatsci.2013.10.003

Cantet RJC, Gualdrón-Duarte JL, Munilla-Leguizamón S. Selección Genómica. Rev Arg Prod Anim 2008; 28(2): 133–136.

Carvalho ME, Eler JP, Bonin MN, Rezende FM, Biase FH, Meirelles FV, et al. Genotypic and allelic frequencies of gene polymorphisms associated with meat tenderness in Nellore beef cattle. Genet Mol Res 2017; 16(1): gmr16018957. https://doi.org/10.4238/gmr16018957

Casas E, White S N, Wheeler TL. Effects of calpastatin and μ-calpain markers in beef cattle on tenderness traits. J Anim Sci 2006; 84(3): 520–525. https://doi.org/10.2527/2006.843520x

Casas E, White SN, Riley DG, Smith TPL, Brenneman RA, Olson TA, et al. (2005). Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition traits in Bos indicus cattle. J Anim Sci 2005; 83(1): 13–19. https://doi.org/10.2527/2005.83113x

Cassar-Malek I, Picard B. Expression marker-based strategy to improve beef quality. Sci World J 2016; 2016: 1–11. https://doi.org/10.1155/2016/2185323

Cassar-Malek I, Picard B, Bernard C, Hocquette JF. Application of gene expression studies in livestock production systems: a European perspective. Aust J Exp Agric 2008; 48(7): 701–710. https://doi.org/10.1071/EA08018

Castro S, Ríos M, Ortiz Y, Manrique C, Jiménez A, Ariza F. Association of single nucleotide polymorphisms in CAPN1, CAST and MB genes with meat color of Brahman and crossbreed cattle. Meat Sci 2016; 117: 44–49. https://doi.org/10.1016/j.meatsci.2016.02.021

Chasco J, Lizaso G, Beriain MJ, Horcada A, Goirraiz C, Hernandez B, et al. Efecto de la Maduracion a Vacio en el Color de la Carne de Ternera de Raza Pirenaica. En: VI Jornadas Produccion Animal. Zaragoza: AIDA ITEA 1995; 16: 621–623.

Cheong HS, Yoon DH, Park BL, Kim LH, Bae JS, Namgoong S, et al. A single nucleotide polymorphism in CAPN1 associated with marbling score in Korean cattle. BMC genet 2008; 9(1): 33. https://doi.org/10.1186/1471-2156-9-33

Chiang WC, Chen YM, Lin SL, Wu KD, Tsai TJ. Bradykinin enhances reactive oxygen species generation, mitochondrial injury, and cell death induced by ATP depletion —A role of the phospholipase C-Ca2+ pathway. Free Radic Biol Med 2007; 43(5): 702–710. https://doi.org/10.1016/j.freeradbiomed.2007.04.032

Chriki S, Renand G, Picard B, Micol D, Journaux L, Hocquette JF. Meta-analysis of the relationships between beef tenderness and muscle characteristics. Livest Sci 2013; 155(2-3): 424–434. https://doi.org/10.1016/j.livsci.2013.04.009

Chung H, Shin S, Chung E. Effects of genetic variants for the bovine calpain gene on meat tenderness. Mol Biol Rep 2014; 41(5): 2963–2970. https://doi.org/10.1007/s11033-014-3152-3

Ciobanu DC, Bastiaansen JW, Lonergan SM, Thomsen H, Dekkers JC, Plastow GS, et al. New alleles in calpastatin gene are associated with meat quality traits in pigs. J Anim Sci 2004; 82(10): 2829–2839. https://doi.org/10.2527/2004.82102829x

Curi RA, Chardulo LAL, Mason MC, Arrigoni MDB, Silveira AC, De Oliveira HN. Effect of single nucleotide polymorphisms of CAPN1 and CAST genes on meat traits in Nellore beef cattle (Bos indicus) and in their crosses with Bos taurus. Anim Genet 2009; 40(4): 456–462. https://doi.org/10.1111/j.1365-2052.2009.01859.x

de Oliveira LG, Delgado EF, Steadham EM, Huff-Lonergan E, Lonergan SM. Association of calpain and calpastatin activity to postmortem myofibrillar protein degradation and sarcoplasmic proteome changes in bovine Longissiumus lumborum and Triceps brachii. Meat Sci 2019; 155: 50–60. https://doi.org/10.1016/j.meatsci.2019.04.015

Dear TN, Meier NT, Hunn M, Boehm T. Gene structure, chromosomal localization, and expression pattern of Capn12, a new member of the calpain large subunit gene family. Genomics 2000; 68(2): 152–160. https://doi.org/10.1006/geno.2000.6289

Ellies-Oury MP, Dumont R, Perrier G, Roux M, Micol D, Picard B. Effect of age and carcass weight on quality traits of m. rectus abdominis from Charolais heifers. Animal 2017; 11(4): 720–727. https://doi.org/10.1017/S1751731116001907

Elsik CG, Tellam RL, Worley KC. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 2009; 324(5926): 522–528. https://doi.org/10.1126/science.1169588

Gagaoua M, Picard B, Soulat J, Monteils V. Clustering of sensory eating qualities of beef: Consistencies and differences within carcass, muscle, animal characteristics and rearing factors. Livest Sci 2018; 214: 245–258. https://doi.org/10.1016/j.livsci.2018.06.011

Gagaoua M, Terlouw EC, Picard B. The study of protein biomarkers to understand the biochemical processes underlying beef color development in young bulls. Meat Sci 2017; 134: 18–27. https://doi.org/10.1016/j.meatsci.2017.07.014

Gagaoua M, Terlouw EC, Micol D, Boudjellal A, Hocquette JF, Picard B. Understanding early post-mortem biochemical processes underlying meat color and pH decline in the Longissimus thoracis muscle of young Blond d’Aquitaine bulls using protein biomarkers. J Agri Food Chem 2015; 63(30): 6799–6809. https://doi.org/10.1021/acs.jafc.5b02615

Gill JL, Bishop SC, McCorquodale C, Williams JL, Wiener P. Association of selected SNP with carcass and taste panel assessed meat quality traits in a commercial population of Aberdeen Angus-sired beef cattle. Genet Sel Evol 2009; 41(1): 36. https://doi.org/10.1186/1297-9686-41-36

Goll DE, Thompson VF, Li H, Wei WE I, Cong J. The calpain system. Physiol Rev 2003; 83: 731–801. https://doi.org/10.1152/physrev.00029.2002

Heaton MP, Harhay GP, Bennett GL, Stone RT, Grosse WM, Casas E, et al. Selection and use of SNP markers for animal identification and paternity analysis in US beef cattle. Mamm Genome 2002; 13(5): 272–281. https://doi.org/10.1007/s00335-001-2146-3

Hocquette JF, Gondret F, Baéza E, Médale F, Jurie C, Pethick DW. Intramuscular fat content in meat-producing animals: development, genetic and nutritional control, and identification of putative markers. Animal 2010; 4(02): 303–319. http://dx.doi.org/10.1017/S1751731109991091

Hou G, Huang M, Gao X, Li J, Gao H, Ren H, et al. Association of Calpain 1 (CAPN1) and HRSP12 allelic variants in beef cattle with carcass traits. Afr J Biotechnol 2011; 10(63): 13714–13718. https://doi.org/10.5897/AJB11.338

Huang Z, Hoffmann FW, Norton RL, Hashimoto AC, Hoffmann PR. Selenoprotein K is a novel target of m-calpain, and cleavage is regulated by Toll-like receptor-induced calpastatin in macrophages. J Biol Chem 2011; 286(40): 34830–34838. https://doi.org/10.1074/jbc.M111.265520

Hwang IH, Thompson JM. The interaction between pH and temperature decline early postmortem on the calpain system and objective tenderness in electrically stimulated beef longissimus dorsi muscle. Meat Sci 2001; 58(2): 167–174. https://doi.org/10.1016/S0309-1740(00)00147-9

Juszczuk-Kubiak E, Sakowski T, Flisikowski K, Wiciñska K, Oprzadek J, Rosochacki SJ. Bovine mu-calpain (CAPN1) gene: new SNP within intron 14. J Appl Genet 2004; 45(4): 457–460.

Kappes SM, Keele JW, Stone RT, McGraw RA, Sonstegard TS, Smith TP, et al. A second-generation linkage map of the bovine genome. Genome Res 1997; 7(3): 235–249. https://doi.org/10.1101/gr.7.3.235

KÖK S, Atalay S. The Use of various SNPs in CAST and CAPN1 genes to determine the meat tenderness in Turkish grey cattle. Kafkas Üniv Vet Fak Derg 2018; 24(1): 1–8. https://doi.org/10.9775/kvfd.2017.17617

Konarska M, Kuchida K, Tarr G, Polkinghorne RJ. Relationships between marbling measures across principal muscles. Meat Sci 2017; 123: 67–78. https://doi.org/10.1016/j.meatsci.2016.09.005

Kristensen L, Purslow PP. The effect of ageing on the water-holding capacity of pork: role of cytoskeletal proteins. Meat Sci 2001; 58(1): 17–23. https://doi.org/10.1016/S0309-1740(00)00125-X

Leal-Gutiérrez JD, Jiménez-Robayo LM. Análisis computacional del efecto de polimorfismos de genes del sistema μ-calpaína/calpastatina sobre la calidad de la carne bovina. Rev Med Vet Zoot 2015; 62(1): 50-66. http://dx.doi.org/10.15446/rfmvz.v62n1.49385

Leal-Gutiérrez JD, Jiménez-Robayo LM, Ariza M, Manrique C, López J, Martínez C, et al. Polimorfismos de los genes CAPN1, CAST, DES, PRKAG3 y RYR1 asociados a la capacidad de retención de agua en crudo y cocinado en carne de bovino en cruces Bos indicus y Bos taurus en Colombia. Arch Zootec 2015; 64(245): 29–35.

Leal-Gutiérrez JD, Jiménez-Robayo LM, Ariza M, Manrique C, López J, Martínez C, et al. Efecto del tipo genético y la maduración sobre la retención de agua en carne de toros castrados. Arch Zootec 2014; 63(243): 409–418.

Lee B, Yoon S, Lee Y, Oh E, Yun YK, Do Kim B, et al. Comparison of marbling fleck characteristics and objective tenderness parameters with different marbling coarseness within longissimus thoracis muscle of high-marbled Hanwoo steer. Korean J Food Sci An 2018; 38(3): 606–614. https://doi.org/10.5851/kosfa.2018.38.3.606

Lee SH, Kim SC, Chai HH, Cho SH, Kim HC, Lim D, et al. Mutations in calpastatin and μ-calpain are associated with meat tenderness, flavor and juiciness in Hanwoo (Korean cattle): Molecular modeling of the effects of substitutions in the calpastatin/μ-calpain complex. Meat Sci 2014; 96(4): 1501–1508. https://doi.org/10.1016/j.meatsci.2013.11.026

Li J, Zhang LP, Gan QF, Li JY, Gao HJ, Yuan ZR, et al. Association of CAST gene polymorphisms with carcass and meat quality traits in Chinese commercial cattle herds. Asian Austral J Anim 2010; 23(11): 1405-1411. https://doi.org/10.5713/ajas.2010.90602

Li X, Ekerljung M, Lundström K, Lundén A. Association of polymorphisms at DGAT1, leptin, SCD1, CAPN1 and CAST genes with color, marbling and water holding capacity in meat from beef cattle populations in Sweden. Meat Sci 2013; 94(2): 153–158. https://doi.org/10.1016/j.meatsci.2013.01.010

Liu X, Usman T, Wang Y, Wang Z, Xu X, Wu M, et al. Polymorphisms in epigenetic and meat quality related genes in fourteen cattle breeds and association with beef quality and carcass traits. Asian Austral J Anim 2015; 28(4): 467–475. https://doi.org/10.5713/ajas.13.0837

Mancini RA, Hunt M. Current research in meat color. Meat Sci 2005; 71(1): 100–121. https://doi.org/10.1016/j.meatsci.2005.03.003

Marsh BB, Ringkob TP, Russell RL, Swartz DR, Pagel LA. Effects of early-postmortem glycolytic rate on beef tenderness. Meat Sci 1987; 21(4): 241–248. https://doi.org/10.1016/0309-1740(87)90061-1

Martínez CA, Manrique C, A Elzo M. Cattle genetic evaluation: a historical perception. Rev Colom Cienc Pecua 2012; 25(2): 293–311.

Melody JL, Lonergan SM, Rowe LJ, Huiatt TW, Mayes MS, Huff-Lonergan E. Early postmortem biochemical factors influence tenderness and water-holding capacity of three porcine muscles. J Anim Sci 2004; 82(4): 1195–1205. https://doi.org/10.2527/2004.8241195x

Morón-Fuenmayor O, Araujo-Febres O, Pietrosemoli S, Gallardo N, Sulbarán B, Peña J. Efecto de la castración sobre la composición físico-química y características sensoriales en carne de bovinos mestizos comerciales. Rev Fac Agron (LUZ) 2010; 27: 594-606.

Motter MM, Corva PM, Marrube G, Miquel MC, Papaleo Mazzuco J, Villarreal EL, et al. Asociación de dos marcadores del gen de la calpastatina con variables productivas de novillos Brangus engordados en pasturas. Revista Argentina de Producción Animal 2013; 33(1): 21–29.

O’keeffe M, Hood DE. Biochemical factors influencing metmyoglobin formation on beef from muscles of differing colour stability. Meat Sci 1982; 7(3): 209–228. https://doi.org/10.1016/0309-1740(82)90087-0

Oliete B, Carballo JA, Monserrat L, Varela A, Moreno T, Sánchez L. Variación del color de la carne en la raza Rubia Gallega, Holstein Frisian y su cruce. En: Efecto del tiempo de conservación. XII Congreso Zootecnia 2002; pp. 609–612.

Page BT, Casas E, Heaton MP, Cullen NG, Hyndman DL, Morris CA, et al. Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. J Anim Sci 2002; 80(12): 3077–3085. https://doi.org/10.2527/2002.80123077x

Page BT, Casas E, Quaas RL, Thallman RM, Wheeler TL, Shackelford SD, et al. Association of markers in the bovine CAPN1 gene with meat tenderness in large crossbred populations that sample influential industry sires. J Anim Sci 2004; 82(12): 3474–3481. https://doi.org/10.2527/2004.82123474x

Park SJ, Beak SH, Da Jin Sol Jung SY, Kim IHJ, Piao MY, Kang HJ, et al. Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle—a review. Asian Austral J Anim 2018; 31(7): 1043–1061. https://doi.org/1043.10.5713/ajas.18.0310

Pearson AM, Wenham LM, Carse WA, McLeod K, Davey CL, Kirton AH. Observations on the contribution of fat and lean to the aroma of cooked beef and lamb. J Anim Sci 1973; 36(3): 511–515. https://doi.org/10.2527/jas1973.363511x

Pinto LFB, Ferraz JBS, Meirelles FV, Eler JP, Rezende FM, Carvalho ME, et al. Association of SNPs on CAPN 1 and CAST genes with tenderness in Nellore cattle. Genet Mol Res 2010; 9(3): 1431–1442. https://doi.org/10.4238/vol9-3gmr881

Pinto LF, Ferraz JB, Pedrosa VB, Eler JP, Meirelles FV, Bonin MN, et al. Single nucleotide polymorphisms in CAPN and leptin genes associated with meat color and tenderness in Nellore cattle. Gen Mol Res 2011; 10(3): 2057–2064. http://dx.doi.org/10.4238/vol10-3gmr1263

Pratiwi N, Maskur M, Priyanto R, Jakaria J. Novel SNP of calpain-1 (CAPN1) gene and its association with carcass and meat characteristics traits in Bali cattle. J Indones Trop Anim Agric 2016; 41(3): 109–116. https://doi.org/10.14710/jitaa.41.3.109-116

Priolo A, Micol D, Agabriel J. Effects of grass feeding systems on ruminant meat colour and flavour. A review. Anim Res 2001; 50(3): 185-200. https://doi.org/10.1051/animres:2001125

Raynaud P, Gillard M, Parr T, Bardsley R, Amarger V, Levéziel H. Correlation between bovine calpastatin mRNA transcripts and protein isoforms. Arch Biochem Biophys 2005; 440(1): 46–53. https://doi.org/10.1016/j.abb.2005.05.028

Reardon W, Mullen AM, Sweeney T, Hamill RM. Association of polymorphisms in candidate genes with colour, water-holding capacity, and composition traits in bovine M. longissimus and M. semimembranosus. Meat Sci 2010; 86(2): 270–275. https://doi.org/10.1016/j.meatsci.2010.04.013

Renand G, Picard B, Touraille C, Berge P, Lepetit J. Relationships between muscle characteristics and meat quality traits of young Charolais bulls. Meat Sci 2001; 59(1): 49–60. https://doi.org/10.1016/S0309-1740(01)00051-1

Renerre M, Anton M, Gatellier P. Autoxidation of purified myoglobin from two bovine muscles. Meat Sci 1992; 32(3): 331–342. https://doi.org/10.1016/0309-1740(92)90096-M

Rodriguez-Zas SL, Southey BR, Heyen DW, Lewin HA. Interval and composite interval mapping of somatic cell score, yield, and components of milk in dairy cattle. J Dairy Sci 2002; 85(11): 3081–3091. https://doi.org/10.3168/jds.S0022-0302(02)74395-6

Schenkel FS, Miller SP, Jiang Z, Mandell IB, Ye X, Li H, et al. Association of a single nucleotide polymorphism in the calpastatin gene with carcass and meat quality traits of beef cattle. J Anim Sci 2006; 84(2): 291–299. https://doi.org/10.2527/2006.842291x

Shin SC, Chung ER. Association of SNP marker in the thyroglobulin gene with carcass and meat quality traits in Korean cattle. Asian Aaustral J Anim 2006: 20(2): 172–177. https://doi.org/10.5713/ajas.2007.172

Smith TPL, Casas E, Rexroad Iii CE, Kappes SM, Keele JW. Bovine CAPN1 maps to a region of BTA29 containing a quantitative trait locus for meat tenderness. J Anim Sci 2000; 78(10): 2589–2594. https://doi.org/10.2527/2000.78102589x

Smith T, Thomas MG, Bidner TD, Paschal JC, Franke DE. Single nucleotide polymorphisms in Brahman steers and their association with carcass and tenderness traits. Genet Mol Res 2009; 8(1): 39–46. https://doi.org/10.4238/vol8-1gmr537

Song S, Zhang X, Hayat K, Liu P, Jia C, Xia S, et al. Formation of the beef flavour precursors and their correlation with chemical parameters during the controlled thermal oxidation of tallow. Food Chem 2011; 124(1): 203–209. https://doi.org/10.1016/j.foodchem.2010.06.010

Straadt IK, Rasmussen M, Andersen HJ, Bertram HC. Aging-induced changes in microstructure and water distribution in fresh and cooked pork in relation to water-holding capacity and cooking loss–A combined confocal laser scanning microscopy (CLSM) and low-field nuclear magnetic resonance relaxation study. Meat Sci 2007; 75(4): 687–695. https://doi.org/10.1016/j.meatsci.2006.09.019

Sun X, Wu X, Fan Y, Mao Y, Ji D, Huang B, et al. Effects of polymorphisms in CAPN1 and CAST genes on meat tenderness of Chinese Simmental cattle. Arch Anim Breed 2018: 61(4): 433–439. https://doi.org/10.5194/aab-61-433-2018

Van Ba H, Reddy BV, Hwang I. Role of calpastatin in the regulation of mRNA expression of calpain, caspase, and heat shock protein systems in bovine muscle satellite cells. In Vitro Cell Dev Biol Animal 2015; 51(5): 447–454. https://doi.org/10.1007/s11626-014-9849-8

Viitala SM, Schulman NF, de Koning DJ, Elo K, Kinos R, Virta A, et al. Quantitative trait loci affecting milk production traits in Finnish Ayrshire dairy cattle. J Dairy Sci 2003; 86(5): 1828–1836. https://doi.org/10.3168/jds.S0022-0302(03)73769-2

Wheeler TL, Cundiff LV, Koch RM. Effect of marbling degree on beef palatability in Bos taurus and Bos indicus cattle. J Anim Sci 1994; 72(12): 3145–3151. https://doi.org/10.2527/1994.72123145x

White SN, Casas E, Wheeler TL, Shackelford SD, Koohmaraie M, Riley DG, et al. A new single nucleotide polymorphism in CAPN1 extends the current tenderness marker test to include cattle of Bos indicus, Bos taurus, and crossbred descent. J Anim Sci 2005; 83(9): 2001–2008. https://doi.org/10.2527/2005.8392001x

Wulf DM, Emnett RS, Leheska JM, Moeller SJ. Relationships among glycolytic potential, dark cutting (dark, firm, and dry) beef, and cooked beef palatability. J Anim Sci 2002; 80(7): 1895–1903. https://doi.org/10.2527/2002.8071895x

Xin J, Zhang LC, Li ZZ, Liu XH, Jin HG, Yan CG. Association of polymorphisms in the calpain I gene with meat quality traits in Yanbian yellow cattle of China. Asian Austral J Anim 2011; 24(1): 9–16. https://doi.org/10.5713/ajas.2011.90407

Yamada T, Sasaki S, Sukegawa S, Yoshioka S, Takahagi Y, Morita M, et al. Association of a single nucleotide polymorphism in titin gene with marbling in Japanese Black beef cattle. BMC Res Notes 2009; 2(1): 78. https://doi.org/10.1186/1756-0500-2-78

Descargas

Publicado

2021-05-28

Cómo citar

Saucedo Uriarte, J. A., Cayo Colca, I. S., Diaz Quevedo, C., & López Lapa, R. M. (2021). Asociación de polimorfismos en los genes CAPN y CAST con propiedades fisicoquímicas de la carne bovina: una revisión. CES Medicina Veterinaria Y Zootecnia, 16(1), 8–28. https://doi.org/10.21615/cesmvz.16.1.1
Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas

Algunos artículos similares: