In vitro embryo production from cumulus–oocyte complexes type II in Bos indicus cattle

Authors

  • Isabel Catalina Vélez Universidad Nacional
  • Alfredo Chica Universidad CES
  • Rodrigo Urrego Universidad CES
  • Viviana Torres Universidad Nacional
  • Claudia Jimenez-Escobar Universidad Nacional
  • Jorge Zambrano-Varon Universidad Nacional

DOI:

https://doi.org/10.21615/cesmvz.12.2.1

Abstract

The morphological selection of cumulus-oocyte complexes (COCs) is animportant step for in vitro embryo production. It has been suggested thatCOC showing signs of atresia have the ability to generate embryos. Theobjective of this work was to evaluate the effect of COC morphology fromBos indicus animals with signs of early atresia versus no signs of atresiaon in vitro embryo production. COC were classified in: Type I (TI): homogeneousooplasm with ≥ 4 layers of compact cumulus cells (CC) and Type II(TII): granular ooplasm and ≥ 4 layers of CC slightly expanded. The COCwere matured in vitro for 24 hours in TCM199 medium and subsequentlyfertilized in vitro for 18 h. The suspected zygotes were cultured in vitro forseven days in modified SOFaa medium. Embryonic quality was determinedby blastomeric count following staining with Hoechst 33342. Student testwas used to determine statistical differences for cleavage, blastocyst rateand blastomeric counts between types of COC. The cleavage rate for TI (n= 220) and TII (n = 161) was 88 ± 4 % and 89 ± 8 % respectively (p> 0.05);embryo development rate was 36 ± 7 % and 33 ± 8 % (p>0.05) respectively.The blastomeric count for both groups was 101 and 104 cells for TI and TIIrespectively (n = 10), (p>0.05). These results demonstrate that there is nodifference in the quantity and quality of embryos produced in vitro usingCOC type I or type II, suggesting that both types could be used for bovine invitro embryo production in Bos indicus cows.

Downloads

Download data is not yet available.

References

1. Perry G. Statistics of embryo collection and transfer in domestic farm animals.
Embryo Transfer Newsletter. 2014; 32: 14-26. http://www.iets.org/pdf/comm_
data/December2015.pdf
2. Thibier M. A contrasted year for the world activity of the animal embryo transfer
industry: a report from the IETS data retrieval committee. IETS newsletter. 2002;
20 (4): 13-19.
3. Perry g. 2012 statistics of embryo collection and transfer in domestic farm animals.
2013. http://www.iets.org/pdf/comm_data/December2013.pdf
4. Lonergan P, Rizos D, Gutierrez-Adan A, Fair T, Boland MP. Oocyte and embryo
quality: effect of origin, culture conditions and gene expression patterns. Reproduction
in Domestic Animals. 2003; 38 (4): 259-267. https://www.ncbi.nlm.nih.
gov/pubmed/12887565
5. Rizos D, Lonergan P, Boland MP, et al. Analysis of Differential Messenger RNA
Expression Between Bovine Blastocysts Produced in Different Culture Systems:
Implications for Blastocyst Quality 1. Biology of reproduction. 2002; 66 (3): 589-
595. https://academic.oup.com/biolreprod/article/66/3/589/2723791/Analysis
6. Rizos D, Ward F, Duffy P, Boland MP, Lonergan P. Consequences of bovine oocyte
maturation, fertilization or early embryo development in vitro versus in vivo:
implications for blastocyst yield and blastocyst quality. Molecular reproduction
and development. 2002; 61 (2): 234-248. https://www.ncbi.nlm.nih.gov/pubmed/
11803560
7. Rizos D, Gutierrez-Adan A, Perez-Garnelo S, De La Fuente J, Boland MP, Lonergan
P. Bovine Embryo Culture in the Presence or Absence of Serum: Implications
for Blastocyst Development, Cryotolerance, and Messenger RNA Expression 1.
Biology of reproduction. 2003; 68 (1):236-243. https://www.ncbi.nlm.nih.gov/
pubmed/12493719
8. Havlicek V, Lopatarova M, Cech S, et al. In vivo culture of bovine embryos and
quality assessment of in vivo vs. in vitro produced embryos. Vet Med–Czech.
2005; 50 (4):149-157. http://vri.cz/docs/vetmed/50-4-149.pdf
9. Warzych E, Pers-Kamczyc E, Krzywak A, Dudzińska S, Lechniak D. Apoptotic index
within cumulus cells is a questionable marker of meiotic competence of bovine
oocytes matured in vitro. Reproductive biology. 2013; 13 (1):82-87. https://
www.ncbi.nlm.nih.gov/pubmed/23522075
10. Mapletoft RJ, Hasler JF. Assisted reproductive technologies in cattle: a review.
Revue Scientifique et Technique-Office International des Epizooties. 2005; 24
(1):393. http://vet.hcmuaf.edu.vn/data/file/application20review.pdf
11. Iager AE, Kocabas AM, Otu HH, et al. A novel biomarker signature expressed
in human cumulus cells predicts oocyte pregnancy potential during Art. Human
Reproduction. 2012; 27: ii1-ii3. https://www.researchgate.net/publication/
293568921_A_novel_biomarker_signature_expressed_in_human_cumulus_
cells_predicts_oocyte_pregnancy_potential_during_ART?ev=prf_high
12. De Loos F, Van Vliet C, van Maurik Pv, Kruip TAM. Morphology of immature bovine
oocytes. Gamete research. 1989; 24 (2): 197-204. https://www.ncbi.nlm.nih.gov/
pubmed/2793058
13. de Wit AA, Wurth YA, Kruip TA. Effect of ovarian phase and follicle quality on morphology
and developmental capacity of the bovine cumulus-oocyte complex. J
Anim Sci. 2000; 78 (5): 1277-1283. https://dl.sciencesocieties.org/publications/
jas/abstracts/78/5/1277?access=0&view=pdf
14. Kastrop PMM, Bevers MM, Destree OHJ, Kruip TAM. Analysis of protein synthesis
in morphologically classified bovine follicular oocytes before and after maturation
in vitro. Molecular reproduction and development. 1990; 26 (3): 222-226.
https://www.ncbi.nlm.nih.gov/pubmed/2375875
15. Van Soom A, Tanghe S, De Pauw I, Maes D, de Kruif A. Function of the cumulus
oophorus before and during mammalian fertilization. Reprod Domest Anim.
2002; 37 (3): 144-151. https://www.ncbi.nlm.nih.gov/pubmed/12071888
16. de Wit AAC, Kruip TAM. Bovine cumulus-oocyte-complex-quality is reflected in
sensitivity for α-amanitin, oocyte-diameter and developmental capacity. Animal
Reproduction Science. 2001; 65 (1–2): 51-65. https://www.ncbi.nlm.nih.gov/pubmed/
11182508
17. Bilodeau-Goeseels S, Panich P. Effects of oocyte quality on development and
transcriptional activity in early bovine embryos. Anim Reprod Sci. 2002; 71 (3-4):
143-155. https://www.ncbi.nlm.nih.gov/pubmed/12047924
18. Urrego R, Herrera-Puerta E, Chavarria NA, Camargo O, Wrenzycki C, Rodriguez-
Osorio N. Follicular progesterone concentrations and messenger RNA expression
of MATER and OCT-4 in immature bovine oocytes as predictors of developmental
competence. Theriogenology. 2015; 83 (7): 1179-1187. https://www.
ncbi.nlm.nih.gov/pubmed/25662108
19. Kussano NR, Leme LO, Guimarães ALS, Franco MM, Dode MAN. Molecular markers
for oocyte competence in bovine cumulus cells. Theriogenology. 2015. https://
www.ncbi.nlm.nih.gov/pubmed/26792377
20. Velez IC, Ramirez MM, Chica AI, et al. 150 proteome of bovine cumulus cells as
related to oocyte morphology and in vitro embryo production. Reproduction, Fertility
and Development. 2017; 29 (1): 183-183. https://www.researchgate.net/publication/
312009043_150_PROTEOME_OF_BOVINE_CUMULUS_CELLS_AS_RELATED_
TO_OOCYTE_MORPHOLOGY_AND_IN_VITRO_EMBRYO_PRODUCTION
21. Li HJ, Liu DJ, Cang M, et al. Early apoptosis is associated with improved developmental
potential in bovine oocytes. Anim Reprod Sci. 2009; 114 (1-3): 89-98.
https://www.ncbi.nlm.nih.gov/pubmed/19008057
22. Urrego R, Tarazona A, Olivera Ángel M, Camargo O. Simplificación de la fertilización
de ovocitos durante la producción in vitro de embriones bovinos. Revista Colombiana
de Ciencias Pecuarias. 2008; 21 (3): 398-405. http://www.scielo.org.co/
scielo.php?script=sci_abstract&pid=S0120-06902008000300009&lng=es&nrm=
iso
23. Gordon I, Lu KH. Production of embryos in vitro and its-impact on livestock production.
Theriogenology. 1990; 33 (1): 77-87. http://www.theriojournal.com/article/
0093
24. Haraguchi T, Ding D-Q, Yamamoto A, Kaneda T, Koujin T, Hiraoka Y. Multiple-color
fluorescene imaging of chromosomes and microtubules in living cells. Cell
structure and function. 2001; 24 (5): 291-298. https://www.ncbi.nlm.nih.gov/
pubmed/15216885
25. Bernal-Ulloa SM, Heinzmann J, Herrmann D, et al. Cyclic AMP affects oocyte
maturation and embryo development in prepubertal and adult cattle. PloS one.
2016; 11 (2): e0150264. http://journals.plos.org/plosone/article?id=10.1371/
journal.pone
26. Duranthon V, Renard JP. The developmental competence of mammalian oocytes: a
convenient but biologically fuzzy concept. Theriogenology. 2001; 55 (6): 1277-1289.
https://www.ncbi.nlm.nih.gov/pubmed/11327684
27. Khurana NK, Niemann H. Effects of oocyte quality, oxygen tension, embryo density,
cumulus cells and energy substrates on cleavage and morula/blastocyst formation
of bovine embryos. Theriogenology. 2000; 54 (5): 741-756. https://www.
ncbi.nlm.nih.gov/pubmed/11101035
28. Blondin P, Sirard M-A. Oocyte and follicular morphology as determining characteristics
for developmental competence in bovine oocytes. Molecular Reproduction
and Development. 1995; 41 (1): 54-62. https://www.ncbi.nlm.nih.gov/pubmed/
7619506
29. Urrego R, Bernal-Ulloa SM, Chavarria NA, et al. Satellite DNA methylation status
and expression of selected genes in Bos indicus blastocysts produced in vivo and
in vitro. Zygote. 2017: 1-10. https://www.ncbi.nlm.nih.gov/pubmed/28137339
30. Bunel A, Jorssen EP, Merckx E, Leroy JL, Bols PE, Sirard MA. Individual bovine in
vitro embryo production and cumulus cell transcriptomic analysis to distinguish
cumulus-oocyte complexes with high or low developmental potential. Theriogenology.
2015; 83 (2): 228-237. https://www.ncbi.nlm.nih.gov/pubmed/25442391
31. Baldoceda-Baldeon LM, Gagné D, Vigneault C, Blondin P, Robert C. Improvement
of bovine in vitro embryo production by vitamin K2 supplementation. Reproduction.
2014; 148 (5): 489-497. https://www.ncbi.nlm.nih.gov/pubmed/25161289
32. Aziz NAA, Osman NA, Bidin H, Embong WK, Hashim NH. Influence of Early
Apoptosis Incidence on In Vitro Maturation of Bovine Oocytes. APCBEE Procedia.
2014; 8: 272-276. http://www.sciencedirect.com/science/article/pii/
S2212670814001195
33. Borup R, Thuesen LL, Andersen CY, et al. Competence classification of cumulus
and granulosa Cell transcriptome in embryos matched by morphology and female
age. PloS one. 2016; 11 (4): e0153562. http://journals.plos.org/plosone/
article?id=10.1371/journal.pone
34. Nivet A-L, Vigneault C, Blondin P, Sirard M-A. Changes in granulosa cells’ gene
expression associated with increased oocyte competence in bovine. Reproduction.
2013; 145 (6): 555-565. https://www.ncbi.nlm.nih.gov/pubmed/23564726
35. Bao Z-J, Zhao S, Haq IU, Zeng S-M. Recombinant bovine interferon-τ enhances in
vitro development of bovine embryos by upregulating expression of connexin 43
and E-cadherin. Journal of dairy science. 2014; 97 (11): 6917-6925. https://www.
ncbi.nlm.nih.gov/pubmed/25242422
36. Santana PPB, Carvalho CMF, da Costa NN, et al. Effect of dexamethasone on development
of in vitro–produced bovine embryos. Theriogenology. 2014; 82 (1):10-16.
https://www.ncbi.nlm.nih.gov/pubmed/24656431

Published

2017-09-27

How to Cite

Vélez, I. C., Chica, A., Urrego, R., Torres, V., Jimenez-Escobar, C., & Zambrano-Varon, J. (2017). In vitro embryo production from cumulus–oocyte complexes type II in Bos indicus cattle. CES Medicina Veterinaria Y Zootecnia, 12(2), 76–87. https://doi.org/10.21615/cesmvz.12.2.1

Issue

Section

ARTÍCULO ORIGINAL DE INVESTIGACIÓN
Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views