Perspectivas del uso de extractos de plantas y frutos amazónicos (açaí, copaíba, salva-do-marajó, pupunha y bacuri) como potenciales moduladores de la fermentación ruminal: un breve panorama

Autores/as

  • Gabriela Jesus Coelho Universidade Federal Rural da Amazônia
  • Julián Andrés Castillo Vargas Universidade Federal Rural da Amazônia
  • Tiago Costa de Araújo Universidade Federal Rural da Amazônia
  • Raylon Pereira Maciel Universidade Federal Rural da Amazônia
  • Kaliandra Souza Alves Universidade Federal Rural da Amazônia
  • Daiany Iris Gomes Universidade Federal Rural da Amazônia
  • Rafael Mezzomo Universidade Federal Rural da Amazônia

DOI:

https://doi.org/10.21615/cesmvz.6773

Palabras clave:

aditivo, antimicrobiano, metabolito secundario, microbiota ruminal, rumiante

Resumen

En la selva amazónica, innumerables plantas poseen compuestos bioactivos, que potencialmente pueden ser utilizados como moduladores de la fermentación ruminal. A pesar de la importancia, han sido desarrollados pocos estudios evaluando el uso de extractos de plantas amazónicas como aditivos alimentarios naturales en la nutrición de rumiantes. Así, el objetivo de este estudio es presentar un breve panorama de los datos científicos en la literatura sobre los efectos del uso de extractos de açaí, copaíba, salvia-do-marajó, chontaduro y bacuri en la fermentación ruminal y su potencial de uso en la dieta de los rumiantes. Açaí (Euterpe oleracea Mart.) tiene 16,08 mg/g de materia seca de flavonoides, compuestos con potente acción antimicrobiana. Los estudios con suplementos de aceite de açaí han demostrado efectos moduladores sobre la fermentación ruminal y la producción de leche en ovejas y vacas. Adicionalmente, la oleorresina de copaiba (Copaifera spp.) y la mantequilla de semilla de bacuri (Platonia insignis Mart.) poseen 88% y 41% de terpenos, respectivamente; la composición fitoquímica del aceite de salvia de marajó (Hyptis crenata Pohl ex Benth) no está completamente resuelta, sin embargo esta fuente está mayoritariamente compuesta de los terpenos alcanfor (33,62%), 1,8-cineol (19,76%) y α-pineno (15,24%), los cuales poseen efecto antimicrobiano in vitro frente a diferentes cepas bacterianas. Los hallazgos de esta revisión demuestran el potencial de los extractos amazónicos en la maximización de la producción animal, debido a sus posibles efectos sobre la modulación de la fermentación ruminal, siendo incentivados a realizar estudios adicionales con el objetivo de una mayor exploración de estos. Aunque actualmente no existen estudios asociados a los efectos del açaí, la salvia, el chontaduro y el bacuri en la fermentación ruminal, se supone que, por su composición fitoquímica, podrían tener un efecto similar a los ionóforos en la producción de rumiantes.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Gabriela Jesus Coelho, Universidade Federal Rural da Amazônia

Universidade Federal Rural da Amazônia, Parauapebas, Pará.

Julián Andrés Castillo Vargas, Universidade Federal Rural da Amazônia

Universidade Federal Rural da Amazônia, Parauapebas, Pará.

Tiago Costa de Araújo, Universidade Federal Rural da Amazônia

Universidade Federal Rural da Amazônia, Parauapebas, Pará.

Raylon Pereira Maciel, Universidade Federal Rural da Amazônia

Universidade Federal Rural da Amazônia, Parauapebas, Pará.

Kaliandra Souza Alves, Universidade Federal Rural da Amazônia

Universidade Federal Rural da Amazônia, Parauapebas, Pará.

Daiany Iris Gomes, Universidade Federal Rural da Amazônia

Universidade Federal Rural da Amazônia, Parauapebas, Pará.

Rafael Mezzomo, Universidade Federal Rural da Amazônia

Universidade Federal Rural da Amazônia, Parauapebas, Pará.

Referencias bibliográficas

Abrão F, Costa LDA, Alves JM, Senedese JM, Castro PT et al. Copaifera langsdorffii oleoresin and its isolated compounds: Antibacterial effect and antiproliferative activity in cancer cell lines. BMC Complementary and Alternative Medicine 2015; 15 (1): 1–10.

Alencar EN, Xavier-Júnior FH, Morais ARV, Dantas TRF, Dantas-Santos N et al. Chemical characterization and antimicrobial activity evaluation of natural oil nanostructured emulsions. Journal of Nanoscience and Nanotechnology 2015; 15 (1): 880–888.

Alessandra-Perini J, Perini JA, Rodrigues-Baptista KC, Moura RS, Palumbo Junior A et al. Euterpe oleracea extract inhibits tumorigenesis effect of the chemical carcinogen DMBA in breast experimental cancer. BMC Complementary and Alternative Medicine 2018; 18 (1): 1–11, 2.

Araújo NMP, Arruda HS, Marques DRP, Oliveira WQ, Pereira GA et al. Functional and nutritional properties of selected Amazon fruits: A review. Food Research International 2021; 147: 110520.

Arruda C, Mejía JAA, Ribeiro VP, Borges CHG, Martins CHG et al. Occurrence, chemical composition, biological activities and analytical methods on Copaifera genus - A review. Biomedicine and Pharmacotherapy 2019; 109: 1-20.

Barros L, Calhelha RC, Queiroz MJRP, Santos-Buelga C, Santos EA et al. The powerful in vitro bioactivity of Euterpe oleracea Mart. seeds and related phenolic compounds. Industrial Crops and Products 2015; 76: 318-322.

Bodas, R et al. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animal Feed Science and Technology 2012; 176: 1-4.

Burkin MA, Galvidis IA. Simultaneous immunodetection of ionophore antibiotics, salinomycin and narasin, in poultry products and milk. Analytical Methods 2021; 13 (13): 1550–1558.

Delgadillo-Ruiz L, Bañuelos-Valenzuela R, Gallegos-Flores P, Echavarría-Cháirez F, Meza-López C et al. Modification of ruminal fermentation in vitro for methane mitigation by adding essential oils from plants and terpenoid compounds. Abanico veterinário 2021; 11.

Favacho HA, Oliveira BR, Santos KC, Medeiros BJ, Sousa PJ et al. Anti-inflammatory and antinociceptive activities of Euterpe oleracea oil. Revista Brasileira de Farmacognosia 2011; 21 (1): 105–114.

Feitosa JM, Silva TSA, Fonseca AEX, Rodrigues WCS, Silva ACE et al. Evaluation of the quality of Amazonian butters as sustainable raw materials for applications in bioproducts. Revista de Ciências Farmacêuticas Básica e Aplicada 2021; 42: 1-11.

Filippis LF. Plant secondary metabolites: From molecular biology to health products. Plant-environment Interaction: Responses and Approaches to Mitigate Stress 2015; 263–299.

Freitas DS, Terry SA, Ribeiro RS, Pereira LG, Tomich TR et al. Unconventional Vegetable Oils for a Reduction of Methanogenesis and Modulation of Ruminal Fermentation. Frontiers in Veterinary Science 2018; 5: 201.

GAO, J. et al. Effects of red cabbage extract rich in anthocyanins on rumen fermentation, rumen bacterial community, nutrient digestion, and plasma indices in beef bulls. Animal 2022; 16 (5): 100510.

Gomes DI, Véras RML, Alves KS, Detmann E, Oliveira LRS et al. Performance and digestibility of growing sheep fed with açai seed meal-based diets. Tropical Animal Health and Production 2012; 44 (7): 1751–1757.

Guimarães AL, Cunha EA, Matias FO, Garcia PG, Danopoulos P et al. Antimicrobial Activity of Copaiba (Copaifera officinalis) and Pracaxi (Pentaclethra macroloba) Oils against Staphylococcus Aureus: Importance in Compounding for Wound Care. International journal of pharmaceutical compounding 2016; 20 (1): 58–62.

Halbwirth, H. The creation and physiological relevance of divergent hydroxylation patterns in the flavonoid pathway. International journal of molecular sciences 2010; 11 (2): 595-621.

Hassan FU, Arshad MA, Ebeid HM, Saif-Ur RM, Sajjad KM et al. Phytogenic Additives Can Modulate Rumen Microbiome to Mediate Fermentation Kinetics and Methanogenesis Through Exploiting Diet–Microbe Interaction. Frontiers in Veterinary Science 2020; 7: 892.

Hristov AN, Bannink A, Crompton LA, Huhtanen P, Kreuzer M et al. Invited review: Nitrogen in ruminant nutrition: A review of measurement techniques. Journal of Dairy Science 2019; 102 (7): 5811–5852.

IBGE – Instituto Brasileiro de Geografia e Estatística. Amazônia Legal, 2019. Disponível em: https://www.ibge.gov.br/geociencias/cartas-e-mapas/mapas-regionais/15819-amazonia-legal.html?=&t=o-que-e>

Ibiapina A, Gualberto LDS, Dias BB, Freitas BCB, Martins GADS et al. Essential and fixed oils from Amazonian fruits: proprieties and applications. Critical Reviews in Food Science and Nutrition 2021; 1:13.

Joch, M. et al. Effects of pure plant secondary metabolites on methane production, rumen fermentation and rumen bacteria populations in vitro. Journal of animal physiology and animal nutrition 2018; 102 (4): 869-881.

Joset WCL, Silva JARD, Godinho LA, Barbosa AVC, Martorano LG et al. Thermoregulatory responses of female buffaloes reared under direct sunlight and shaded areas in the dry season on Marajó Island, Brazil. Acta Scientiarum - Animal Sciences 2018; 40.

Kang J, Li Z, Wu T, Jensen GS, Schauss AG et al. Anti-oxidant capacities of flavonoid compounds isolated from acai pulp (Euterpe oleracea Mart.). Food Chemistry 2010; 122 (3): 610-617.

Kholif AE, Olafadehan OA. Essential oils and phytogenic feed additives in ruminant diet: chemistry, ruminal microbiota and fermentation, feed utilization and productive performance. Phytochemistry Reviews 2021; 1: 22.

KozloskI, GV. Bioquímica dos ruminantes. Fundação de Apoio a Tecnologia e Ciencia-Editora UFSM, 2017.

Leão DP, Ferreira IDJ, Nasimento OV, Cavalcanti V, Campelo PH et al. Bioproducts of Açaí (Euterpe spp): a review study on the composition and applications (Amazon, Brazil). European Academic Research 2021; 9 (1): 777–795.

Lee, SJ et al. Effects of Olive (Olea europaea L.) Leaves with Antioxidant and Antimicrobial Activities on in vitro Ruminal Fermentation and Methane Emission. Animals 2021; 11 (7): 2008.

Lemos BJ, Souza FM, Arnhold E, Conceição EC, Couto VR et al. Effects of plant extracts from Stryphnodendron adstringens (mart.) coville, Lafoensia pacari a. st.-hil, Copaifera spp., and Pterodon emarginatus Vogel on in vitro rumen fermentation. Journal of Animal Physiology and Animal Nutrition 2021; 105 (4): 639-652.

Lima EM, Vargas JAC, Gomes DI, Maciel RP, Alves, KS et al. Intake, digestibility, and milk yield response in dairy buffaloes fed Panicum maximum cv. Mombasa supplemented with seeds of tropical açai palm. Tropical Animal Health and Production 2021; 53 (1): 1-9.

Lima FEOD, Goes RHDT, Gandra JR, Penha DDS, Oliveira, RTD et al. Inclusion of copaiba oil (Copaifera sp.) as additive in supplements for cattle on pasture. Revista Brasileira de Saúde e Produção Animal 2018; 19 (2): 178–192.

Lima GM, Brito AKS, Farias LM, Rodrigues LARL, Pereira CFC et al. Effects of “Bacuri” Seed Butter (Platonia insignis Mart.) on Metabolic Parameters in Hamsters with Diet-Induced Hypercholesterolemia. Evidence-Based. Complementary and Alternative Medicine 2021; 2021.

Magalhães TSSA, Macedo PCO, Converti A, Lima AAN. The use of Euterpe oleracea Mart. As a new perspective for disease treatment and prevention. Biomolecules 2020; 10 (6): 813.

Martins GR, Amaral FRL, Brum FL, Mohana-Borges R, Moura SS et al. Chemical characterization, antioxidant and antimicrobial activities of açaí seed (Euterpe oleracea Mart.) extracts containing A- and B-type procyanidins. Food Science and Technology 2020; 132: 109830.

Melhorança Filho AL, Pereira MRR. Atividade antimicrobiana de óleos extraídos de açaí e de pupunha sobre o desenvolvimento de Pseudomonas aeruginosa e Staphylococcus aureus. Bioscience Journal 2012; 28 (4): 598–603.

Melo PS, Selani MM, Gonçalves RH, Oliveira JP, Massarioli AP et al. Açaí seeds: An unexplored agro-industrial residue as a potential source of lipids, fibers, and antioxidant phenolic compounds. Industrial Crops and Products 2021; 161: 113204.

Mendel M, Chłopecka M, Dziekan N, Karlik W. Phytogenic feed additives as potential gut contractility modifiers - A review. Animal Feed Science and Technology 2017; 230: 30-46.

Mendonça DE, Onofre SB. Antimicrobial activity of the oil-resin produced by copaíba - Copaifera multijuga Hayne (Leguminosae). Revista Brasileira de Farmacognosia 2009; 19: 577–581.

Moraes JE, Reis TL, Fuzitani EJ, Damatto Júnior ER, Maioli CMT et al. Pupunha heart of palm residue silage as an option of roughage for ruminants. Boletim de Indústria Animal 2021; 78: 1-23.

Moura LV, Oliveira ER, Fernandes ARM, Gabriel AMA, Silva LHX et al. Feed efficiency and carcass traits of feedlot lambs supplemented either monensin or increasing doses of copaiba (Copaifera spp.) essential oil. Animal Feed Science and Technology 2017; 232: 110–118.

Neri-Numa IA, Sancho RAS, Pereira APA, Pastore GM et al. Small Brazilian wild fruits: Nutrients, bioactive compounds, health-promotion properties and commercial interest. Food Research International 2018; 103: 345-360.

Olagaray KE, Bradford BJ. Plant flavonoids to improve productivity of ruminants – A review. Animal feed science and technology 2019; 251: 21-36.

Oliveira ER, Abreu FSS, Marques OFC, Silva JT, Durães HF et al. Degradabilidade e digestibilidade de dietas para cordeiros confinados suplementados com níveis crescentes de óleo de copaíba (Copaifera Sp.).” Brazilian Journal of Animal and Environmental Research 2020; 3 (3): 2152–64.

Oliveira WF, Lima EM, Freitas DR, Santos S, Reis GC et al. Production, chemical composition, and economic viability of Minas Frescal cheese from buffaloes supplemented with açai seed. Tropical Animal Health and Production 2020; 52 (5): 2379–2385.

ONU, 2018. Nações Unidas (ONU). 2019. Departamento de Assuntos Econômicos e Sociais. Divisão de População. Perspectivas da População Mundial, a revisão de 2019.

Ornaghi M, Prado RM, Ramos TR, Catalano FR, Mottin C et al. Natural Plant-Based Additives Can Improve Ruminant Performance by Influencing the Rumen Microbiome. Research Square 2020; 1: 1–22.

Oskoueian E, Abdullah N, Oskoueian A. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. BioMed research international 2013; 2013.

Panchawat S, Ameta C. Medicinal Importance of Plant Metabolites. Chemistry of Biologically Potent Natural Products and Synthetic Compounds 2021; 1–19.

Patra A, Park T, Kim M, Yu Z et al. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. Journal of Animal Science and Biotechnology 2017; 8 (1): 1-18.

Pedraza-Hernández J, Elghandour MM, Khusro A, Salem MZ, Camacho-Diaz LM et al. Assessment on bioactive role of Moringa oleifera leaves as anthelmintic agent and improved growth performance in goats. Tropical Animal Health and Production 2021; 53 (2): 318.

Pereira MU, Spisso BF, Couto SJ, Ferreira RG, Monteiro MA et al. Ocorrência de resíduos de ionóforos poliéteres em leite UHT comercializado na região metropolitana do Rio de Janeiro. Vigilância Sanitária em Debate: Sociedade, Ciência & Tecnologia 2015; 3 (3): 70-77.

Pereira TCJ, Ribeiro LSO, Pereira MLA, Pires AJV, Carvalho GGP et al. Feeding behavior of goat kids fed diets containing peach palm meal. Acta Scientiarum. Animal Sciences 2020; 42.

Pereira TCJ, Ribeiro LSO, Pires AJV, Pereira MLA, Santos AB et al. Growth performance and apparent digestibility by goats fed diets with peach palm meal replacing maize. Applied Animal Science 2019; 35 (6): 563-569.

Pires MB, Amante ER, Lopes AS, Rodrigues AMC, Silva LHM. Peach palm flour (Bactris gasipae kunth): potential application in the food industry. Food Science and Technology, v. 39, p. 613-619, 2019.

Poulopoulou I., Hadjigeorgiou I. Evaluation of Terpenes’ Degradation Rates by Rumen Fluid of Adapted and Non-adapted Animals. Natural Products and Bioprospecting 2021; 11 (3): 307–313.

Radice M, Viafara D, Neill D, Asanza M, Sacchetti G et al. Chemical characterization and antioxidant activity of Amazonian (Ecuador) Caryodendron orinocense Karst. and Bactris gasipaes Kunth seed oils. Journal of Oleo Science 2014; 63 (12): 1243-1250.

Rebelo MM, Silva JKRD, Andrade EHA, Maia JGS. Antioxidant capacity and biological activity of essential oil and methanol extract of Hyptis crenata Pohl ex Benth. Revista Brasileira de Farmacognosia 2009; 19 (1): 230–235.

Reddy PRK, Elghandour MMMY, Salem AZM, Yasaswini D, Reddy PPR et al. Plant secondary metabolites as feed additives in calves for antimicrobial stewardship. Animal Feed Science and Technology 2020; 264: 114469.

Ribeiro JF, Figueiredo MLF, Carvalho ALM, Sousa Neto BP. Atividades farmacológicas da manteiga de bacuri (Platonia insignis Mart.): revisão integrativa. Revista Rene 2021; 22: 65.

Samal, L. et al. Effects of plants containing secondary metabolites as feed additives on rumen metabolites and methanogen diversity of buffaloes. Animal Production Science 2016; 56 (3): 472-481.

Santos DDS, Klauck V, Campigotto G, Alba DF, Reis, JH et al. Benefits of the inclusion of açai oil in the diet of dairy sheep in heat stress on health and milk production and quality. Journal of Thermal Biology. 2019; 84: 250–258.

Santos DS, Klauck V, Souza CF, Baldissera MD, Theisen C et al. Effects of the inclusion of açai oil in diet of prepartum holstein cows on milk production, somatic cell counts and future lactation. Anais da Academia Brasileira de Ciências. 2020; 92 (4):1–12.

Santos OV, Soares SD, Dias PCS, Duarte SPA, Santos MPL, Nascimento FCA. Chromatographic profile and bioactive compounds found in the composition of pupunha oil (Bactris gasipaes Kunth): implications for human health. Revista de Nutrição. 2020; 33: e190146.

Santos, MFG.; Alves, RE.; Roca, M. Carotenoid composition in oils obtained from palm fruits from the Brazilian Amazon. Grasas Aceites 2015; 66 (3): e086.

Schauss AG, Wu W, Prior RL, Ou B, Patel D et al. Phytochemical and nutrient composition of the freeze-dried Amazonian palm berry, Euterpe oleraceae Mart. (Acai). Journal of agricultural and food chemistry 2006; 54 (22): 8598-8603.

Sedano-Partida MD, Santos KP, Carvalho WRS, Luz CLS, Furlan CM. A review of the phytochemical profiling and biological activities of Hyptis Jacq.: a Brazilian native genus of Lamiaceae. Revista Brasileira de Botânica 2020; 43: 213-228.

Shakeri, P et al. Products derived from olive leaves and fruits can alter in vitro ruminal fermentation and methane production. Journal of the Science of Food and Agriculture 2017; 97 (4): 1367-1372.

Soeiro MNC, Vergoten G, Bailly C. Pharmacological Profile of Garcinielliptone FC from Platonia insignis. Revista Brasileira de Farmacognosia 2022: 1-11.

Song H, Shen X, Deng R, Zhang Y, Zheng X. Dietary anthocyanin-rich extract of açai protects from diet-induced obesity, liver steatosis, and insulin resistance with modulation of gut microbiota in mice. Nutrition 2021; 86: 111176.

Souza ANC, Soares RA, Oliveira HD, Vasconcelos YAG, Souza PJC et al. The essential oil of Hyptis crenata pohl ex benth. Presents an antiedematogenic effect in mice. Brazilian Journal of Medical and Biological Research 2021; 54 (3): 1–9.

Souza BSF, Carvalho HO, Ferreira IM, Cunha EL, Barros AS et al. Effect of the treatment with Euterpe oleracea Mart. oil in rats with Triton-induced dyslipidemia. Biomedicine and Pharmacotherapy 2017; 90: 542–547.

Souza-Monteiro JR, Hamoy M, Santana-Coelho D, Arrifano GP, Paraense, RS et al. Anticonvulsant properties of Euterpe oleracea in mice. Neurochemistry International 2015; 90: 20-27.

Stevanović ZD, Bošnjak-Neumüller J, Pajić-Lijaković I, Raj J, Vasiljević M. Essential oils as feed aditives - Future perspectives. Molecules 2021; 23 (7): 1717.

Stoldt AK, Derno M, Das G, Weitzel JM, Wolffram S et al. Effects of rutin and buckwheat seeds on energy metabolism and methane production in dairy cows. Journal of Dairy Science 2016; 99 (3): 2161-2168.

Tobouti PL, Martins TCA, Pereira TJ, Mussi MCM. Antimicrobial activity of copaiba oil: A review and a call for further research. Biomedicine and Pharmacotherapy 2017; 94: 93-99.

Uekane TM, Nicolotti L, Griglione A, Bizzo HR, Rubiolo P et al. Studies on the volatile fraction composition of three native Amazonian-Brazilian fruits: Murici (Byrsonima crassifolia L., Malpighiaceae), bacuri (Platonia insignis M., Clusiaceae), and sapodilla (Manilkara sapota L., Sapotaceae). Food chemistry 2017; 219: 13-22.

Urasaki Y, Beaumont C, Workman M, Talbot JN, Hill DK, Le TT. Fast-Acting and Receptor-Mediated Regulation of Neuronal Signaling Pathways by Copaiba Essential Oil. International Journal of Molecular Sciences 2020; 21 (7): 2259.

Violante IMP, Garcez WS, Barbosa CS, Garcez FR. Chemical composition and biological activities of essential oil from Hyptis crenata growing in the Brazilian Cerrado. Natural Product Communications 2012b; 7 (10): 1387–1389.

Violante IMP, Hamerski L, Garcez WS, Batista AL, Chang MR et al. Antimicrobial activity of some medicinal plants from the Cerrado of the central-western region of Brazil. Brazilian Journal of Microbiology 2012a; 43 (4): 1302–1308.

Xiong J, Matta FV, Grace M, Lila MA, Ward NI et al. Phenolic content, anti-inflammatory properties, and dermal wound repair properties of industrially processed and non-processed açai from the Brazilian Amazon. Food and Function 2020; 11 (6): 4903–4914.

Yamaguchi KKL, Pereira LFR, Lamarão CV, Lima ES, Veiga-Junior VF. Amazon acai: Chemistry and biological activities: A review. Food Chemistry 2015; 179: 137-151.

Yan HX, Sun lS, Zhao GQ. Effect of β-carotene on selected indices of in vitro rumen fermentation in goats. Journal of Animal and Feed Sciences 2007; 16 (2): 581-585.

Wang, Z. et al. Effect of Oregano Oil and cobalt lactate on sheep in vitro digestibility, fermentation characteristics and rumen microbial community. Animals 2022; 12 (1): 118.

Publicado

2022-11-01

Cómo citar

Jesus Coelho, G., Castillo Vargas, J. A., Costa de Araújo, T., Pereira Maciel, R., Souza Alves, K., Iris Gomes, D., & Mezzomo, R. (2022). Perspectivas del uso de extractos de plantas y frutos amazónicos (açaí, copaíba, salva-do-marajó, pupunha y bacuri) como potenciales moduladores de la fermentación ruminal: un breve panorama. CES Medicina Veterinaria Y Zootecnia, 17(2), 36–63. https://doi.org/10.21615/cesmvz.6773