Estructura, propiedades y genética de las caseínas de la leche: una revisión

Autores/as

DOI:

https://doi.org/10.21615/cesmvz.5231

Palabras clave:

beta-caseína, kappa-caseína, estudios de asociación del genoma completo, micelas, proteínas de la leche

Resumen

La leche es un alimento esencial para los humanos y una de sus importancias radica en el contenido de proteínas lácteas. Las proteínas más frecuentes en este preciado líquido son las caseínas (αS1-caseína, αS2-caseína, β-caseína y κ-caseína), las cuales son fuente de aminoácidos para la dieta de los mamíferos en sus primeros días de vida. En la leche, las caseínas, están formadas por agregados moleculares de proteínas de tamaños variables denominados micelas. El objetivo de esta revisión es presentar un panorama general de la estructura, propiedades y genética de las caseínas lácteas y su relación con la salud humana. A partir de esta revisión, se pudo establecer, que las αs1 y αs2 caseínas se encuentran en conjunto con la β-caseína, formando el núcleo micelar, interactuando con los iones de calcio, para formar y mantener la micela estable. Animales caracterizados genéticamente con algunas variantes de estas proteínas, se asocian con un rendimiento en el volumen de leche. La κ-caseína, por su parte, está asociada con un aumento en el rendimiento y calidad de los quesos, de ahí su importancia económica, mientras que las formas más comunes de β-caseína en razas de ganado lechero son A1 y A2. La β-caseína A2 no presenta efectos negativos a la salud humana, por el contrario, ha sido asociada con propiedades reductoras de colesterol y triacilglicéridos. Sin embargo, la variante A1 de la β-caseína produce un péptido bioactivo denominado β-casomorfina-7 (BCM-7), que puede desempeñar un papel etiológico poco claro en el desarrollo de algunas enfermedades en humanos, tales como: enfermedad isquémica del corazón, diabetes mellitus tipo 1, síndrome de muerte súbita infantil (SIDS), desórdenes neurológicos, como autismo y esquizofrenia. 

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Jonathan Padilla Doval, Fundación Universitaria Navarra

Grupo de Investigación Cuidados de la Salud e Imágenes Diagnósticas, Facultad de Ciencias de la Salud, Fundación Universitaria Navarra - UNINAVARRA, Neiva, Colombia. 

Juan Carlos Zambrano Arteaga, Universidad de Nariño

Grupo de Investigación en Bioquímica y Estudios Genéticos - BIOGEN. Facultad de Ciencias Exactas y Naturales. Universidad de Nariño - UDENAR, Ciudadela Universitaria Torobajo, San Juan de Pasto, Colombia. 

Referencias bibliográficas

Guetouache M, Guessas B, Medjekal S. Composition and nutritional value of raw milk. Issues in Biological Sciences and Pharmaceutical Research 2014; 2 (10): 115 - 122.

Fox PF, Uniacke-Lowe T, McSweeney PL, Mahony JA. Dairy chemistry and biochemistry. 2da ed. Switzerland: Springer; 2015.

Shashank CG, Rishi KP, Garima G, Taruneet K, Manish KK. A1 and A2 beta casein: Twin faces of milk. J Pharmacogn Phytochem 2018; 7 (4): 221-224.

Hernández R. Caracterización, diagnóstico y corrección de alteraciones en las características físico-químicas de la leche. Tesis de Doctorado. Centro Nacional de Sanidad Agropecuaria, Universidad Agraria de la Habana. Cuba, 2003. 5 p.

Reinhardt TA, Lippolis JD, Nonnecke BJ, Sacco RE. Bovine milk exosome proteome. J Protem 2012; 75 (5): 1486-1492.

Miluchová M, Gábor M, Trakovická A. Analysis of genetic structure in Slovak Pinzgau cattle using five candidate genes related to milk production traits. Genetika 2014; 46 (3): 865-875.

Girata JG. Estudio zootécnico de la neoporosis bovina: análisis teórico de orientación para los ganaderos de Santander y Boyacá. Monografía, Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente, Universidad Nacional Abierta y a Distancia, Bucaramanga, 2016. 58 p.

Wedholm A, Larsen L, Lindmark-Månsson H, Karlsson A, Andrén A. Effect of protein composition on the cheese making properties of milk from individual dairy cows. J. Dairy Sci 2006; 89: 3296-3305.

Solarte CE, Rosero CY, Eraso YM, Zambrano GL, Barrera DC, et al. Polimorfismo de las fracciones caseínicas de la leche en bovinos Holstein del Trópico Alto de Nariño. Livestock Res Rural Dev 2011; 23 (6): 1-11.

Aschaffenburg R, Drewry J. Genetics of the β-lactoglobulins of cows’ milk. Nature 1957; 180: 376-378.

Formaggioni P, Summer A, Malacarne M, Mariani P. Milk protein polymorphism: Detection and diffusion of the genetic variants in Bos genus. Ann Fac Med Vet Un Parma 1999; 19: 127-165.

Caroli M, Chessa S, Erhardt GJ. Milk protein polymorphisms in cattle: effect on animal breeding and human nutrition. J Dairy Sci 2009; 92 (11): 5335-5352.

Farrell Jr HM, Jimenez-Flores R, Bleck GT, Brown EM, Butler JE, et al. Nomenclature of the Proteins of Cows’ Milk-Sixth Revision. J Dairy Sci 2004; 87 (6): 1641-1674.

Clemens RA. Milk A1 and A2 peptides and diabetes. In: Milk and milk products in human nutrition. Karger Publishers 2011; 67: 187-195.

Petrat B, Andersen P, Rasmussen JT, Poulsen NA, Larsen LB, et al. In vitro digestion of purified β-casein variants A1, A2, B, and I: Effects on antioxidant and angiotensin-converting enzyme inhibitory capacity. J Dairy Sci 2015; 98: 1-12.

McLachlan CN. Beta-casein A1, ischaemic heart disease mortality, and other illnesses. Med Hypotheses 2001; 56 (2): 262-272.

Walzem R, Dillard C, German J. Whey components: millennia of evolution create functionalities for mammalian nutrition: what we know and what we may be overlooking. Crit Rev Food Sci Nutr 2002; 42 (4): 353-375.

Rahimi Z, Gholami M, Rahimi Z, Yari K. Evaluation of beta-casein locus for detection of A1 and A2 alleles frequency using allele specific PCR in native cattle of Kermanshah, Iran. Biharean Biologist 2015; 9 (2): 85-87.

Phadungath C. Casein micelle structure: a concise review. Songklanakarin J Sci Technol 2005; 27 (1): 201-212.

Sulimova G, Azari M, Rostamzadeh J, Abadi M, Lazebny O. κ-casein gene (CSN3) allelic polymorphism in Russian cattle breeds and its informative value as a genetic marker. Genetika 2007; 43 (1): 88-95.

Gottardo P, Penasa M, Righi F, López-Villalobos N, Cassandro M, et al. Fatty acid composition of milk from Holstein-Friesian, Brown Swiss, Simmental and Alpine Grey cows predicted by mid-infrared spectroscopy. Ital J Anim Sci 2017; 16 (3): 380-389.

Pacheco V, Parra G, López L, Moreno V, Sifuentes A. Milk composition and its relationship with weaning weight in Charolais cattle. R Bras Zootec 2015; 44 (6): 207-212.

Margariños H. Producción higiénica de la leche cruda: una guía para la pequeña y mediana empresa. Guatemala, Guatemala: Organización de Estados Americanos OEA 2001. 7 p.

Goulding DA, Fox PF, O’Mahony JA. Milk proteins: An overview. In M. Boland, & H. Singh (Eds.). Milk proteins 2020; 21-98.

Pal S, Woodford K, Kukuljan S, Ho S. Milk intolerance, beta-casein and lactose. Nutrients 2015; 7: 7285-7297.

Calvo M. Caseínas. Curso de Química Bioquímica de los alimentos. Universidad de Zaragoza, España 2017; [acceso: 09 de mayo de 2018]. URL: http://milksci.unizar.es/bioquimica/temas/proteins/caseina.html.

Farrell Jr HM, Malin EL, Brown EM, Qi PX. Casein micelle structure: what can be learned from milk synthesis and structural biology? Curr Opin Colloid Interface Sci 2006; 11: 135-147.

Barbosa RS, Fischer V, Ribeiro ME, Zanela MB, Stumpf MT, et al. Electrophoretic characterization of proteins and milk stability of cows submitted to feeding restriction. Pesq Agropec Bras 2012; 47: 621-628.

Kaskous S. A1- and A2-Milk and their effect on human health. J Food Eng Technol 2020; 9 (1): 15 - 21. Doi.org/10.32732/jfet.2020.9.1.15.

Livney YD. Milk proteins as vehicles for bioactives. Curr Opin. Colloid Interface Sci 2010; 15: 73-83.

Rijnkels M. Multispecies comparison of the casein gene loci and evolution of the casein gene family. J Mammary Gland Biol Neoplasia 2002; 7: 327-345.

Ostersen S, Foldaber J, Hermansen J. Effects of stage of lactation, milk protein genotype and body condition at calving on protein composition and renneting properties of bovine milk. J Dairy Res 1997; 64: 207-219.

Huppertz T, Fox PF, Kelly AL. The caseins: Structure, stability, and functionality. Proteins in Food Processing 2018; 3: 49-92.

Hammarsten O. Zur Frage, ob das Caseïn ein einheitlicher Stoff sei. Z Phys Chem 1883; 7: 227-273.

Osborne TB, Wakeman AJ. Some new constituents of milk: third paper. A new protein, soluble in alcohol. J Biol Chem 1918; 33 (2): 243-251.

Jenness R, Larson BL, McMeekin TL, Swanson AM, Whitnah CH, et al. Nomenclature of the proteins of bovine milk. J Dairy Sci 1956; 39: 536-541.

Kern L, Fabre O, Scher J, Petit J. Chemical fractionation of caseins by differential precipitation: Influence of pH, calcium addition, protein concentration and temperature on the depletion in α‐and β‐caseins. Int J Food Sci Technol 2020; 55: 542-552.

Whitney RM, Brunner JR, Ebner KE, Farrell Jr HM, Josephson RV, et al. Nomenclature of the proteins of cow’s milk: Fourth revision. J Dairy Sci 1976; 59: 795-815.

Swaisgood HE, Larson BL, Kalan EB, Brunner JR, Morr CV, et al. Methods of gel electrophoresis of milk proteins. 1ra ed. USA: Am Dairy Sci Assoc; 1975.

Franzoi M, Niero G, Visentin G, Penasa M, Cassandro M, et al. Variation of detailed protein composition of cow milk predicted from a large Database of mid-infrared spectra. Animals 2019; 9 (176): 2-14.

Rehan F, Ahemad N, Gupta M. Casein nanomicelle as an emerging biomaterial-A comprehensive review. Colloids Surf. B: Biointerfaces 2019; 179: 280-292. Doi.org/10.1016/j.colsurfb.2019.03.051

Schlimme E, Buchheim W. Proteínas lácteas: caseínas, proteínas del suero y proteínas minoritarias. En: La leche y sus componentes. Propiedades químicas y físicas. Acribia. Zaragoza, Spain 2002; 33-75.

Holt C, Sawyer L. Caseins as rheomorphic proteins. Interpretation of primary and secondary structures of αs1, β-and κ-caseins. J Chem Soc. Faraday Trans 1993; 89: 2683-2692.

Fox PF, Kelly AL. The caseins. En: Yada RY. Proteins in Food Processing. 1ra ed. USA: Woodhead Publishing Limited; 2004. p. 29-71.

Broyard C, Gaucheron F. Modifications of structures and functions of caseins: a scientific and technological challenge. Dairy Sci & Technol 2015; 95: 831-862.

Fox PF, Brodkorb A. The casein micelle: Historical aspects, current concepts and significance. Int Dairy J 2008; 18 (7): 677-684.

Jeurnink TJ, De Kruif CG. Changes in milk on heating: viscosity measurements. J Dairy Res 1993; 60: 139-50.

Dalgleish DG, Corredig M. The structure of the casein micelle of milk and its changes during processing. Annu Rev Food Sci Technol 2012; 3: 449-467.

Marchin S, Putaux J, Pignon F, Léonil J. Effects of the environmental factors on the casein micelle structure studied by cryo transmission electron microscopy and small angle X-ray scattering/ultrasmall angle X-ray scattering. J Chem Phys 2007; 126: 045-101.

Delacroix-Buchet A, Lefier D, Nuits-Petit V. Polymorphisme de la caséine κ de trois races bovines francaises et aptitude a la coagulation. Lait 1993; 7: 61-72.

Waugh DF. Formation and structure of casein micelles. In Milk Proteins. McKenzie HA, ed., Academic Press, New York. Chem Mol Biol 1971; 2: 3-85.

Schmidt DG. Association of caseins and casein micelle structure. En: Fox PF. Developments in Dairy Chemistry. 1ra ed. United Kingdom: Applied Science Publishers; 1982. p. 63-110.

Walstra P, Jenness R. Dairy Chemistry and Physics. 1ra ed. USA: John Wiley & Sons; 1984.

Walstra P. Casein sub-micelles: ¿do they exist? Int Dairy J 1999; 9: 189-192.

Walstra P, Geurts T, Noomen A, Jellma A, Van Boekel. Dairy technology: Principles of milk properties and processes. 1ra ed. USA: Marcel Dekker; 1999.

Horne DS. Caseins, micellar structure. En: Roginski R, Fuquay J and Fox PF. Encyclopedia of dairy sciences. 1ra ed. United Kingdom: Academic Press; 2002. p. 1902-1909.

De Kruif C, Holt C. Casein micelle structure, functions and interactions. En: Fox PF, McSweeney PL. Advanced Dairy Chemistry. 3ra ed. USA: Kluwer Academic/Plenum Publishers; 2003. p. 233-276.

Zhou C, Li C, Cai W, Liu S, Yin H, et al. Genome-Wide Association Study for Milk Protein Composition Traits in a Chinese Holstein Population Using a Single-Step Approach. Front Genet 2019; 10: 72.

Requena FD, Aguera EI, Requena F. Milk of casein of genetic in the Frison bovine. Rev electrón vet 2007; 8 (1): 1-9.

Martin P, Szymanowska M, Zwierzchowski L, Leroux C. The impact of genetic polymorphisms on the protein composition of ruminant milks. Reprod Nutr Dev 2002; 42: 433-459.

Echeverri J, López A. Marcadores moleculares en producción bovina. Grupo de Investigación BIOGEM, Departamento de Producción Animal, Facultad Ciencias Agrarias, Universidad Nacional de Colombia. Medellin, Colombia. 2011. p. 93.

Kamiński S, Cieślińska A, Kostyra E. Polymorphism of bovine beta-casein and its potential effect on human health. J Appl Genet 2007; 48 (3): 189-198.

Thompson MP, Kiddy CA, Pepper L, Zittle CA. Variations in the αs-casein fraction of individual cow’s milk. Nature 1962; 195: 1001-1002.

Kishore A, Mukesh M, Sobti RC, Mishra BP, Sodhi M. Variations in the regulatory region of alpha S1-casein milk protein gene among tropically adapted Indian native (Bos Indicus) cattle. ISRN Biotechnol 2013; 1-10.

Molee A, Poompramun C, Mernkrathoke P. Effect of casein genes - beta-LGB, DGAT1, GH, and LHR - on milk production and milk composition traits in crossbred Holsteins. Genet Mol Res 2015; 14 (1): 2561-2571.

Acosta A, Sanz A, Ronda R, Osta R, Rodellar C, et al. Efecto de polimorfismos genéticos en la producción de leche del ganado Siboney de Cuba. Rev Salud Anim 2016; 38 (3): 142-148.

Grosclaude F, Mahé MF, Mercier JC, Bonnemaire J, Teissier JH. Polymorphisme des lactoprotéines de bovines Népalais. I. Mise en évidence, chez le yak, et caractérisation biochimique de deux nouveaux variants: β-Lactoglobuline Dyak et caséine αs1-E. Ann Genet Sel Anim 1976; 8: 461-479.

Erhardt G. A new αs1-casein allele in bovine milk and its occurrence in different breeds. Anim Genet 1993; 24: 65-66.

Mariani P, Anghinetti A, Serventi P, Fossa E. Frazionamento della caseina mediante RP-HPLC: Sulla osservazione di alcuni latti individuali caratterizzati da una bassa proporzione di αs1-caseina in vacche di razza Bruna. Ind Latte 1993; 29: 75-85.

Mahé MF, Miranda G, Queval R, Bado A, Zafindrajaona, et al. Genetic polymorphism of milk proteins in African Bos taurus and Bos indicus populations. Characterization of variants αs1-Cn. H and κ-Cn. J Genet Sel Evol 1999; 31: 239-253.

Lühken G, Caroli A, Ibeagha E, Erhardt G. Characterization and genetic analysis of bovine αs1-casein I variant. Anim Genet 2009; 40: 479-485.

Whitney R: Proteins of milk; in Wong NP, Noble P (eds): Fundamentals of dairy chemistry. Van Nostrand Reinhold New York 1988; 56: 81-169.

Ristanic M, Glavinic U, Vejnovic B, Maletic M, Kirovski D, et al. Beta-casein gene polymorphism in Serbian Holstein-Friesian cows and its relationship with milk production traits. Acta Veterinaria-Beograd 2020; 70 (4): 497-510. Doi: 10.2478/acve-2020-0037

Oleński K, Cieślińska A, Suchocki T, Szyda J, Kamiński S. Polymorphism in coding and regulatory sequences of beta-casein gene is associated with milk production traits in Holstein-Friesian cattle. Animal Sci Papers and Reports 2012; 30 (1): 5-12.

Kemenes PA, Regitano LC, Rosa AJ, Packer IU, Razook AG, et al. k-Casein, b-lactoglobulin and growth hormone allele frequencies and genetic distances in Nelore, Gyr, Guzerá, Caracu, Charolais, Canchim and Santa Gertrudis cattle. Genet Mol Biol 1999; 22: 539-541.

Alipanah M, Klashnikova L, Rodionov G. K-casein genotypic frequencies in Russian breed Black and Red Pied cattle. Iran J Biotechnol 2007; 3: 191-194.

Deb R, Singh U, Kumar S, Singh R, Sengar G, et al. Genetic polymorphism and association of kappa-casein gene with milk production traits among Frieswal (HF × Sahiwal) cross breed of Indian origin. IJVR 2014; 15 (4): 406-408.

Shaidullin R, Sharafutdinov G, Moskvicheva A, Faizov T, Yuldashbaev Y. Inheritance of allelic variants of the kappa-casein gene by cows. Bio Web of Conferences 2020; 17: 00059.

Gorodetskiĭ SI, Kaledin AS. Nucleotide sequence of the cDNA of kappa casein in cows. Genetika 1987; 23: 596-604.

Zepeda JL, Alarcón B, Ruíz A, Núñez R, Ramírez R. Polymorphism of three milk protein genes in Mexican Jersey cattle. Electron J Biotechn 2015; 18 (1): 1-4.

Di Stasio L, Merlin P. Polimorfismi biochimici del latte nella razza bovina Grigio Alpina. Riv Zoot 1979; 2: 64-67.

Mariani P. Sulla presenza di una terza k-caseina nel latte di vacche di razza Bruna. Sci Tecn Latt Cas1983; 34: 174-181.

Molavi Z, Shadkhast M, Moshtaghi H, Habibian S, Reza H. Polymorphism of κ-Casein Gene in Iranian Holsteins. Iran J Biotech 2014; 12 (1): 12118.

Sulimova GE, Badagueva IN, Udina IG. Polymorphism of the κ-casein gene in subfamilies of the Bovidae. Genetika (Moskva) 1996; 32: 1576-1582.

Prinzenberg EM, Jianlin H, Erhardt G. Genetic variation in the κ-casein gene (CSN3) of chinese yak (Bos grunniens) and phylogenetic analysis of CSN3 sequences in the genus Bos. J Dairy Sci 2008; 91: 1198-1203.

Lin C, Mcallister A, Ng-Kwai-Hang K, Hayes J. Effects of milk protein loci on first lactation in dairy cattle. J Dairy Sci 1986; 69 (3): 704-711.

Gonyon D, Mather R, Hines H, Haelein G, Arave C, et al. Associations of bovine blood and milk polymorphisms with lactation traits: Holstein. J Dairy Sci 1987; 70: 2585-2598.

Phoebe X. Studies of casein micelle structure: the past and the present. Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture 2007; 87: 363-383.

De Kruif C. Caseins. En: Aalbersberg WY, Hamer WY, Jasperse RJ, De Jongh P, De Kruif CG, et al. Progress in Biotechnology, volume 23. 1ra ed. United Kingdom: Elservier Science; 2003. p. 219-269.

Barbosa SB, Araújo II, Martins MF, Silva EC, Jacopini LA, et al. Genetic association of variations in the kappa-casein and β-lactoglobulin genes with milk traits in girolando cattle. Rev Bras Saúde Prod Anim 2019; 20: 1-12.

Eigel WN, Butler JE, Ernstrom CA, Farrell HM, Halwarkar VR, et al. Nomenclature of proteins of cow’s milk: fifth revision. J Dairy Sci 1984; 67: 1599 -1631.

Bobe G. Milk protein genotypes explain variation of milk protein composition. Lowa State University Animal Industry Report 2004; 35-38.

Ng-Kwai-Hang K, Grosclaude F. Genetic polymorphism of milk proteins. Advanced Dairy Chemistry 2003; 1: 739-816.

Miciński J, Klupczyński J, Mordas W, Zabłotna R. 2007. Yield and composition of milk from Jersey cows as dependent on the genetic variants of milk proteins. Pol J Food Nutr Sci 2007; 57 (3): 95-99.

Tsiaras AM, Bargouli GG, Banos G, Boscos CM. Effect of kappa-casein and beta-lactoglobulin loci on milk production traits and reproductive performance of Holstein cows. J Dairy Sci 2005; 88: 327-334.

Naranjo J, Posso A, Cárdenas H, Muñoz J. Detección de variantes alélicas de la kappa-caseína en bovinos Hárton del Valle. Acta agro 2007; 56 (1): 26-32.

Berezkina G, Kislyakova E, Vorobyeva SL, Shkarupa KЕ. Assessment of bulls by capa-casein in the conditions of the Udmurt Republic. Bio Web of Conferences 2020; 17: 00073.

Brooke S, Dwyer K, Woodford K, Kost N. Systematic review of the gastrointestinal effects of A1 compared with A2 β-casein. Adv Nutr 2017; 8: 739-748.

Aoki T, Yamada N, Kako Y. Relation between colloidal calcium phosphate cross-linkage and release of β-casein from bovine casein micelles on cooling. Agric Biol Chem 1990; 54: 2287-2292.

Keating AF, Smith TJ, Ross RP, Cairns MT. A note on the evaluation of a beta-casein variant in bovine breeds by allele-specific PCR and relevance to β-casomorphin. Irish J Agr Food Res 2008; 47: 99-104.

Clemens R, Pressman P. A1/A2 milk and β-Casomorphins: The Resurgence of controversy. Food Technol Magazine 2018; 72 (12): 1-4.

Inhofer C. A2 milk also interesting for Bavarian cow farmers? LKV J Animal Owners in Bavaria 2019; 4: 42-43.

Chia JS, McRae JL, Enjapoori AK, Lefevre CM, Kukuljan S, et al. Dietary cow’s milk protein A1 beta-casein increases the incidence of T1D in NOD Mice. Nutrients 2018; 10: 1291.

Elliott RB, Harris DP, Hill JP, Bibby NJ, Wasmuth HE. Type I (insulin-dependent) diabetes mellitus and cow milk: casein variant consumption. Diabetologia 1999; 42 (3): 292 - 296. Doi: 10.1007/s001250051153

Jaiswal KP, De S, Sarsavan A. Review on bovine beta-casein (A1, A2) gene polymorphism and their potentially hazardous on human health. IJPAES 2014; 3 (1): 1-12.

Sun Z, Zhang Z, Wang X, Cade R, Elmir Z, et al. Relation of beta-casomorphin to apnea in sudden infant death syndrome. Peptides 2003; 24 (6): 937-943.

Bekuma A, Galmessa U. A1 Beta casein: Devil in the milk-A short communication. Approaches in Poultry. Dairy and Vet Sci J 2019; 7 (1): 606-608.

Heck JM, Schennink A, Van Valenberg HJ, Bovenhuis H, Visker MH, et al. Effects of milk protein variants on the protein composition of bovine milk. J Dairy Sci 2009; 92: 1192-1202.

Jakob E. Unterschiede zwischen labtrβiger und normalgerinnender Milch unter besonderer BerOcksichtigung der Casein fraktion. Schweizerische Milchwirtschajqliche Forschung 1992; 15: 27-29.

Pasin G. A2 milk facts: What is A2 milk? California Dairy Research Foundation, USA 2017; [acceso: 21 de abril de 2021]. https://cdrf.org/2017/02/09/a2-milk-facts/.

Banerjee S. A2 milk: The unknown story about a milk protein. Act Sci Nutrit Health 2018; 2 (3): 28-31.

Nguyen DD, Solah VA, Busetti F, Smolenski G, Cooney T. Application of ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (Orbitrap™) for the determination of beta-casein phenotypes in cow milk. Food Chemistry 2019; (19): 31651-6.

Prasanta B, Binoy C, Deep P, Chandra P. A1 and A2 milk & its impacto in human health. Int J Sci Nat 2016; 7: 1-5.

Schopen GC, Visker MH, Koks PD, Mullaart E, Van Arendonk JA, et al. Whole-genome association study for milk protein composition in dairy cattle. J Dairy Sci 2011; 94: 3148-3158.

Sanchez M, Govignon-Gion A, Croiseau P, Fritz S, Hozé C, et al. Within-breed and multi-breed GWAS on imputed whole-genome sequence variants reveal candidate mutations affecting milk protein composition in dairy cattle. Genet Select Evolut 2017; 49: 68.

Viale E, Tiezzi F, Maretto F, De Marchi M, Penasa M, et al. Association of candidate gene polymorphisms with milk technological traits, yield, composition, and somatic cell score in Italian Holstein-Friesian sires. J Dairy Sci 2017; 100: 7271-7281.

Scarcia P, Palmieri L, Agrimi G, Palmieri F, Rottensteiner H. Three mitochondrial transporters of Saccharomyces cerevisiae are essential for ammonium fixation and lysine biosynthesis in synthetic minimal medium. Mol Genet Metab 2017; 122: 54-60.

Pegolo S, Mach N, Ramayo Y, Schiavon S, Bittante G, et al. A Integration of GWAS, pathway and network analyses reveals novel mechanistic insights into the synthesis of milk proteins in dairy cows. Sci Rep 2018; 8: 566.

Ibtisham F, Zhang L, Xiao M, An L, Ramzan MB, et al. Genomic selection and its application in animal breeding. Thai J Vet Med 2017; 47 (3): 301-310.

Descargas

Publicado

2021-12-31

Cómo citar

Padilla Doval, J., & Zambrano Arteaga, J. C. (2021). Estructura, propiedades y genética de las caseínas de la leche: una revisión. CES Medicina Veterinaria Y Zootecnia, 16(3), 62–95. https://doi.org/10.21615/cesmvz.5231