Acetogeninas, alternativa en el tratamiento de cáncer en caninos

Autores/as

  • Mónica Marcela Gaviria Calle Universitaria Lasallista
  • Silvia Posada Arias Universitaria Lasallista
  • Juliana Mira Hernández Universitaria Lasallista

DOI:

https://doi.org/10.21615/cesmvz.13.2.5

Resumen

El cáncer es una enfermedad que implica la alteración de procesos celulares,como metabolismo celular, activación o silenciamiento de genes ycrecimiento descontrolado. Es una las principales causas de muerte enhumanos, así como en animales de compañía, por lo cual cada vez es másimportante la búsqueda y desarrollo de medicamentos. Algunos de losmedicamentos que se producen para tratar el cáncer, provienen de plantas,como el taxol y la vincristina. La necesidad de ampliar el uso de productosnaturales para tratar esta enfermedad, no solo en humanos sino enanimales de compañía como caninos, abre las puertas a la búsqueda deactividad biológica de plantas que son usadas popularmente por presentaralgún efecto con la enfermedad. Este es el caso de la guanábana (Annonamuricata), de la cual se han extraído metabolitos secundarios (acetogeninas)que presentan in vitro mayor toxicidad en líneas celulares cancerígenascomparadas con líneas celulares normales. El fin de esta revisiónfue realizar una aproximación de los usos de estos metabolitos en cáncer, para ello fue hecha una búsqueda en PubMed con diferentes palabras claves y seconcluyó, que las acetogeninas comprenden una fuente potencial para el desarrollode medicamentos contra el cáncer.

 

Acetogenins, alternative cancer treatment in dogs

Cancer is a disease that alter cellular processes, like cell metabolism, activationand deactivation of genes and uncontrolled growth. It is one of themain causes of death in humans, as well as in companion animals, whichis why it is increasingly important to seek and develop medicines for thetreatment. Some of the drugs that are produced to treat cancer come fromplants, such as taxol and vincristine. The necessity to expand the use ofnatural products to treat this disease, not only in humans but also in companionanimals such as dogs, opens the doors to seek biological activity ofplants that are commonly used because they present some effect over thedisease. This is the case of soursop (Annona muricata), from which secondarymetabolites (acetogenins) have been extracted and have presentedin vitro greater toxicity in cancer cell lines compared to normal cell lines.Therefore, this review was carried out in order to make an approximationof the uses of these metabolites in cancer, for which a search was carriedout in PubMed with different key words and it was concluded that acetogeninscomprise a potential source for the development of medicines againstcancer.

Keywords: Acetogenins, cancer, canine, ACGs.

 

Acetogeninas, alternativa no tratamento de câncer em caninos

O câncer é uma doença que envolve a alteração de processos celulares, como o metabolismocelular, ativação ou silenciamento de genes e o crescimento descontrolado.É uma das principais causas de morte em humanos, assim como em animais decompanhia, para os quais a busca e o desenvolvimento de medicamentos são cadavez mais importantes. Algumas das drogas que são produzidas para tratar o câncersão derivadas de plantas, como o taxol e a vincristina. A necessidade de ampliar ouso de produtos naturais para tratar esta doença, não somente em humanos, masem animais de companhia, como cães, abre as portas para a busca da atividade biológicade plantas que são popularmente usadas para causar algum efeito na doença.Este é o caso da graviola (Annona muricata), da qual se extraíram os metabólitossecundários (acetogeninas), que apresentam maior toxicidade in vitro nas linhagensde células cancerígenas do que nas linhagens normais. O objetivo desta revisão foifazer uma aproximação dos usos desses metabólitos no câncer, para os quais foifeita uma pesquisa em PubMed com palavras-chave diferentes e concluiu-se queas acetogeninas constituem uma fonte potencial para o desenvolvimento de drogasanti-câncer.

Palavras-chave: Acetogeninas, cães, câncer, ACGs.

 

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

1. Abe M, Kubo A, Yamamoto S, Hatoh Y, Murai M, et al. Dynamic function of the spacer region of acetogenins in the inhibition of bovine mitochondrial NADH-ubiquinone oxidoreductase (complex I). Biochemistry (Mosc). 2008;47(23):6260-6266. doi:10.1021/bi800506s.

2. Abe M, Murai M, Ichimaru N, Kenmochi A, Yoshida T, et al. Dynamic function of the alkyl spacer of acetogenins in their inhibitory action with mitochondrial complex I (NADH-ubiquinone oxidoreductase). Biochemistry (Mosc). 2005;44(45):14898-14906. doi:10.1021/bi051568t.

3. Ahammadsahib KI, Hollingworth RM, McGovren JP, Hui YH, McLaughlin JL. Mode of action of bullatacin: a potent antitumor and pesticidal annonaceous acetogenin. Life Sci. 1993;53(14):1113-1120.

4. Alali FQ, Liu XX, McLaughlin JL. Annonaceous acetogenins: recent progress. J Nat Prod. 1999;62(3):504-540. doi:10.1021/np980406d.

5. Amoedo ND, Obre E, Rossignol R. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy. Biochim Biophys Acta. 2017. doi:10.1016/j.bbabio.2017.02.005.

6. Bakhoum SF, Landau DA. Chromosomal Instability as a Driver of Tumor Heterogeneity and Evolution. Cold Spring Harb Perspect Med. 2017. doi:10.1101/cshperspect.a029611.

7. Bermejo A, Figadere B, Zafra-Polo M-C, Barrachina I, Estornell E, et al. Acetogenins from Annonaceae: recent progress in isolation, synthesis and mechanisms of action. Nat Prod Rep. 2005;22(2):269-303. doi:10.1039/b500186m.

8. Bioactive Compounds from Natural Sources: Isolation, Characterization and Biological Properties. 1st ed. (Tringali C, ed.). London: CRC Press; 2001.
9. Bravo T D, Cruz-Casallas P, Ochoa A J. Prevalence of neoplasm in canines in the university of the Llanos, during 2004 to 2007. Rev MVZ Córdoba. 2010;15(1):1925-1937.

10. Caceres S, Peña L, Lacerda L, Illera MJ, de Andres PJ, et al. Canine cell line, IPC-366, as a good model for the study of inflammatory breast cancer. Vet Comp Oncol. 2017;15(3):980-995. doi:10.1111/vco.12238.

11. Caparros-Lefebvre D, Elbaz A. Possible relation of atypical parkinsonism in the French West Indies with consumption of tropical plants: a case-control study. The Lancet. 1999;354(9175):281-286. doi:10.1016/S0140-6736(98)10166-6.

12. Cavé A, Figadère B, Laurens A, Cortés D. Acetogenins from Annonaceae. In: Progress in the Chemistry of Organic Natural Products. Vol 70. 1st ed. India: Springer-Verlag Wien; 1997:81-288.

13. Cendales M, Ricardo D, Suárez C, Enrique L. Cytotoxic compounds from plant sources and their relationship with inhibitor of apoptosis proteins. Rev Colomb Cancerol. 2016;20(3):124-134. doi:10.1016/j.rccan.2015.10.002.

14. Chen Y, Chen J, Xu S, Wang Y, Li X, et al. Antitumor activity of annonaceous acetogenins in HepS and S180 xenografts bearing mice. Bioorg Med Chem Lett. 2012;22(8):2717-2719. doi:10.1016/j.bmcl.2012.02.109.

15. Cragg GM, Grothaus PG, Newman DJ. Impact of Natural Products on Developing New Anti-Cancer Agents. Chem Rev. 2009;109(7):3012-3043. doi:10.1021/cr900019j.

16. Cragg GM, Newman DJ. Biodiversity: A continuing source of novel drug leads. Pure Appl Chem. 2005;77(1):7-24. doi:10.1351/pac200577010007.

17. Cragg GM, Newman DJ. Natural products: A continuing source of novel drug leads. Biochim Biophys Acta BBA - Gen Subj. 2013;1830(6):3670-3695. doi:10.1016/j.bbagen.2013.02.008.

18. D`Ver A. Report: Ascending Oral Dosing of Paw Paw Extract in Male Beagle Dogs; WEL Study No. 01-090. Doylestown; 2001.

19. Davis BW, Ostrander EA. Domestic Dogs and Cancer Research: A Breed-Based Genomics Approach. ILAR J. 2014;55(1):59-68. doi:10.1093/ilar/ilu017.

20. Degli Esposti M, Ghelli A, Ratta M, Cortes D, Estornell E. Natural substances (acetogenins) from the family Annonaceae are powerful inhibitors of mitochondrial NADH dehydrogenase (Complex I). Biochem J. 1994;301 ( Pt 1):161-167.

21. Deshmukh A, Deshpande K, Arfuso F, Newsholme P, Dharmarajan A. Cancer stem cell metabolism: a potential target for cancer therapy. Mol Cancer. 2016;15(1):69. doi:10.1186/s12943-016-0555-x.

22. Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites. 2012;2(2):303-336. doi:10.3390/metabo2020303.

23. Ding Z-Y, Zou X-L, Wei Y-Q. Cancer Microenvironment and Cancer Vaccine. Cancer Microenviron. 2012;5(3):333-344. doi:10.1007/s12307-012-0107-x.

24. Egenvall A, Bonnett B, Hedhammar Å, Olson P. Mortality in over 350,000 Insured Swedish Dogs from 1995–2000: II. Breed-Specific Age and Survival Patterns and Relative Risk for Causes of Death. Acta Vet Scand. 2005;46:121. doi:10.1186/1751-0147-46-121.

25. Elgue V, Piaggio J, Amaral C, Pessina P. Factores asociados a la presentación del tipo de cáncer en caninos atendidos en el Hospital de la Facultad de Veterinaria de Uruguay. Vet Montev. 2012;48(187):25-30.

26. Ermak G, Davies KJA. Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol. 2002;38(10):713-721.

27. Ferreira de la Cuesta G, Pedraza F. Patología Veterinaria. I. Medellín: Editorial Universidad de Antioquia; 2003.

28. Garzón-Alzate A, Aranzazu-Taborda D, Rodríguez B, Álvarez-Yépez G. Caracterización de los tumores cutáneos caninos diagnosticados en el laboratorio de patología animal de la Universidad de Antioquia entre 1994 - 2003. Rev Col Cienc Pec. 2005;18(4):386.

29. Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015;14(2):111-129. doi:10.1038/nrd4510.
30. Hasanpourghadi M, Pandurangan AK, Mustafa MR. Modulation of oncogenic transcription factors by bioactive natural products in breast cancer. Pharmacol Res. 2017. doi:10.1016/j.phrs.2017.09.009.

31. Hong J, Li Y, Xiao Y, Li Y, Guo Y, et al. Annonaceous acetogenins (ACGs) nanosuspensions based on a self-assembly stabilizer and the significantly improved anti-tumor efficacy. Colloids Surf B Biointerfaces. 2016;145:319-327. doi:10.1016/j.colsurfb.2016.05.012.

32. Hurst DR, Welch DR. Metastasis Suppressor Genes: At the Interface Between the Environment and Tumor Cell Growth. Int Rev Cell Mol Biol. 2011;286:107-180. doi:10.1016/B978-0-12-385859-7.00003-3.

33. IARC. GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012. http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx. Published 2017. Accessed February 22, 2017.

34. Jolad S, Hoffman J, Schram K, Cole, Tempesta MS, et al. Uvaricin, a new antitumor agent from Uvaria accuminata (Annonaceae). J Org Chem. 1982;47(16):3151-3153. doi:10.1021/jo00137a024.

35. Jossan A, Dubaele B, Cavé A. Deux nouvelles acetogenines monotetrahydrofuranniques cytotoxiques: L’annomonicine et la montanacine. Tetrahedron Lett. 1990;31(13):1-4. doi:10.1016/S0040-4039(00)98805-1.

36. Juang S-H, Chiang C-Y, Liang F-P, Chan H-H, Yang J-S, et al. Mechanistic Study of Tetrahydrofuran- acetogenins In Triggering Endoplasmic Reticulum Stress Response-apotoposis in Human Nasopharyngeal Carcinoma. Sci Rep. 2016;6. doi:10.1038/srep39251.
37. Kelsey JL, Moore AS, Glickman LT. Epidemiologic studies of risk factors for cancer in pet dogs. Epidemiol Rev. 1998;20(2):204-217.

38. Khanna C, Lindblad-Toh K, Vail D, London C, Bergman P, et al. The dog as a cancer model. Nat Biotechnol. 2006;24(9):1065-1066. doi:10.1038/nbt0906-1065b.

39. Ko Y-M, Wu T-Y, Wu Y-C, Chang F-R, Guh J-Y, et al. Annonacin induces cell cycle-dependent growth arrest and apoptosis in estrogen receptor-α-related pathways in MCF-7 cells. J Ethnopharmacol. 2011;137(3):1283-1290. doi:10.1016/j.jep.2011.07.056.

40. Kojima N, Tanaka T. Medicinal chemistry of Annonaceous acetogenins: design, synthesis, and biological evaluation of novel analogues. Mol Basel Switz. 2009;14(9):3621-3661. doi:10.3390/molecules14093621.

41. Komazawa S, Sakai H, Itoh Y, Kawabe M, Murakami M, et al. Canine tumor development and crude incidence of tumors by breed based on domestic dogs in Gifu prefecture. J Vet Med Sci. 2016;78(8):1269-1275. doi:10.1292/jvms.15-0584.


42. Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2000;11(4):265-283.

43. Lannuzel A, Höglinger GU, Champy P, Michel PP, Hirsch EC, et al. Is atypical parkinsonism in the Caribbean caused by the consumption of Annonacae? J Neural Transm Suppl. 2006;(70):153-157.
44. Leboeuf M, Cavé A, Bhaumik PK, Mukherjee B, Mukherjee R. The phytochemistry of the annonaceae. Phytochemistry. 1982;21(12):2783-2813. doi:10.1016/0031-9422(80)85046-1.

45. Lee C-C, Lin Y-H, Chang W-H, Lin P-C, Wu Y-C, et al. Squamocin modulates histone H3 phosphorylation levels and induces G1 phase arrest and apoptosis in cancer cells. BMC Cancer. 2011;11:58. doi:10.1186/1471-2407-11-58.

46. Liaw C-C, Liao W-Y, Chen C-S, Jao S-C, Wu Y-C, et al. The calcium-chelating capability of tetrahydrofuranic moieties modulates the cytotoxicity of annonaceous acetogenins. Angew Chem Int Ed Engl. 2011;50(34):7885-7891. doi:10.1002/anie.201100717.

47. Liaw C-C, Wu T-Y, Chang F-R, Wu Y-C. Historic perspectives on Annonaceous acetogenins from the chemical bench to preclinical trials. Planta Med. 2010;76(13):1390-1404. doi:10.1055/s-0030-1250006.

48. Ma C, Wang Q, Shi Y, Li Y, Wang X, et al. Three new antitumor annonaceous acetogenins from the seeds of Annona squamosa. Nat Prod Res. 2017:1-6. doi:10.1080/14786419.2016.1274897.




49. Magadi VP, Ravi V, Arpitha A, Litha null, Kumaraswamy K, et al. Evaluation of cytotoxicity of aqueous extract of Graviola leaves on squamous cell carcinoma cell-25 cell lines by 3-(4,5-dimethylthiazol-2-Yl) -2,5-diphenyltetrazolium bromide assay and determination of percentage of cell inhibition at G2M phase of cell cycle by flow cytometry: An in vitro study. Contemp Clin Dent. 2015;6(4):529-533. doi:10.4103/0976-237X.169863.

50. Maplestone RA, Stone MJ, Williams DH. The evolutionary role of secondary metabolites--a review. Gene. 1992;115(1-2):151-157.

51. Mathews C, van Holde K, Ahern K. Biochemistry. 3rd ed. https://www.pearsonhighered.com/program/Mathews-Biochemistry-4th-Edition/PGM39253.html. Accessed April 24, 2017.

52. McLaughlin JL. Paw paw and cancer: annonaceous acetogenins from discovery to commercial products. J Nat Prod. 2008;71(7):1311-1321. doi:10.1021/np800191t.

53. Merlo DF, Rossi L, Pellegrino C, Ceppi M, Cardellino U, et al. Cancer incidence in pet dogs: findings of the Animal Tumor Registry of Genoa, Italy. J Vet Intern Med. 2008;22(4):976-984. doi:10.1111/j.1939-1676.2008.0133.x.

54. Ministerio de Agricultura. Agronet. Estadísticas Guanábana. http://www.agronet.gov.co/estadistica/Paginas/default.aspx. Published 2016. Accessed January 2, 2017.

55. Oberlies NH, Chang CJ, McLaughlin JL. Structure-activity relationships of diverse Annonaceous acetogenins against multidrug resistant human mammary adenocarcinoma (MCF-7/Adr) cells. J Med Chem. 1997;40(13):2102-2106. doi:10.1021/jm9700169.

56. Oberlies NH, Jones JL, Corbett TH, Fotopoulos SS, McLaughlin JL. Tumor cell growth inhibition by several Annonaceous acetogenins in an in vitro disk diffusion assay. Cancer Lett. 1995;96(1):55-62.

57. Oeffinger KC, Baxi SS, Friedman DN, Moskowitz CS. Solid Tumor Second Primary Neoplasms: Who is at Risk, What Can We Do? Semin Oncol. 2013;40(6):676-689. doi:10.1053/j.seminoncol.2013.09.012.

58. OMS. Temas de salud: Cáncer. WHO. http://www.who.int/topics/cancer/es/. Accessed February 23, 2017.
59. Ortiz CEA, López JHF. Estudio retrospectivo de masas cutáneas neoplásicas en caninos diagnosticadas histopatológicamente en la Universidad de La Salle (1999-2003). Rev Med Vet. 2008;(16):111–120.

60. Osorio J, Suárez J, Uribe-Velásquez L. Metabolismo de los lípidos en caninos en el contexto de salud-enfermedad. 2010;4(1):83-97.

61. Pacini N, Borziani F. Cancer Stem Cell Theory and the Warburg Effect, Two Sides of the Same Coin? Int J Mol Sci. 2014;15(5):8893-8930. doi:10.3390/ijms15058893.

62. Patnaik AK, Ehler WJ, MacEwen EG. Canine cutaneous mast cell tumor: morphologic grading and survival time in 83 dogs. Vet Pathol. 1984;21(5):469-474.

63. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23(1):27-47. doi:10.1016/j.cmet.2015.12.006.

64. Pelicano H, Feng L, Zhou Y, Carew JS, Hileman EO, et al. Inhibition of Mitochondrial Respiration. A novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem. 2003;278(39):37832-37839. doi:10.1074/jbc.M301546200.

65. Pettit GR, Mukku VJRV, Cragg G, Herald DL, Knight JC, et al. Antineoplastic agents. 558. Ampelocissus sp. cancer cell growth inhibitory constituents. J Nat Prod. 2008;71(1):130-133. doi:10.1021/np068050q.

66. Potts LF, Luzzio FA, Smith SC, Hetman M, Champy P, et al. Annonacin in Asimina triloba fruit: Implication for neurotoxicity. NeuroToxicology. 2012;33(1):53-58. doi:10.1016/j.neuro.2011.10.009.

67. Pubchem. NSC695405: Acetogenins. Published 2005. Accessed March 31, 2017. https://pubchem.ncbi.nlm.nih.gov/compound/393472.

68. Rodríguez-Sánchez D, Silva-Platas C, Rojo RP, García N, Cisneros-Zevallos L, et al. Activity-guided identification of acetogenins as novel lipophilic antioxidants present in avocado pulp (Persea americana). J Chromatogr B. 2013;942:37-45. doi:http://dx.doi.org/10.1016/j.jchromb.2013.10.013.

69. Saad ES, Milley KM, Al-Khan AA, Nimmo JS, Bacci B, et al. Canine Mixed Mammary Tumour as a Model for Human Breast Cancer with Osseous Metaplasia. J Comp Pathol. 2017;156(4):352-365. doi:10.1016/j.jcpa.2017.03.005.

70. Shaitelman SF, Chiang Y-J, Griffin KD, DeSnyder SM, Smith BD, et al. Radiation therapy targets and the risk of breast cancer-related lymphedema: a systematic review and network meta-analysis. Breast Cancer Res Treat. 2017;162(2):201-215. doi:10.1007/s10549-016-4089-0.

71. de Sousa OV, Vieira GD-V, de Jesus R G de Pinho J, Yamamoto CH, Alves MS. Antinociceptive and anti-inflammatory activities of the ethanol extract of Annona muricata L. leaves in animal models. Int J Mol Sci. 2010;11(5):2067-2078. doi:10.3390/ijms11052067.

72. Sun S, Liu J, Kadouh H, Sun X, Zhou K. Three new anti-proliferative Annonaceous acetogenins with mono-tetrahydrofuran ring from graviola fruit (Annona muricata). Bioorg Med Chem Lett. 2014;24(12):2773-2776. doi:10.1016/j.bmcl.2014.03.099.

73. Tan J, Yang S, Shen P, Sun H, Xiao J, et al. C-kit signaling promotes proliferation and invasion of colorectal mucinous adenocarcinoma in a murine model. Oncotarget. 2015;6(29):27037-27048.

74. Torres-Vidales G. Estudio histológico retrospectivo de tumores en caninos diagnosticados en el laboratorio de patología de la Facultad de Medicina Veterinaria de la Universidad Nacional de Colombia. 2003.

75. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8(6):519-530.

76. Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea--a paradigm shift. Cancer Res. 2006;66(4):1883-1890; discussion 1895-1896. doi:10.1158/0008-5472.CAN-05-3153.

77. Yuan S-SF, Chang H-L, Chen H-W, Yeh Y-T, Kao Y-H, et al. Annonacin, a mono-tetrahydrofuran acetogenin, arrests cancer cells at the G1 phase and causes cytotoxicity in a Bax- and caspase-3-related pathway. Life Sci. 2003;72(25):2853-2861. doi:10.1016/S0024-3205(03)00190-5.

78. Zafra-Polo MC, González MC, Estornell E, Sahpaz S, Cortes D. Acetogenins from Annonaceae, inhibitors of mitochondrial complex I. Phytochemistry. 1996;42(2):253-271.

Descargas

Publicado

2018-09-19

Cómo citar

Gaviria Calle, M. M., Posada Arias, S., & Mira Hernández, J. (2018). Acetogeninas, alternativa en el tratamiento de cáncer en caninos. CES Medicina Veterinaria Y Zootecnia, 13(2), 157–172. https://doi.org/10.21615/cesmvz.13.2.5
Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas