Sub-Acute Ruminal Acidosis and non-structural carbohydrates: a study model in nutritional immunology

Autores/as

  • Luis Miguel Gómez Universidad CES
  • Sandra Lucía Posada Universidad de Antioquia
  • Martha Olivera Universidad de Antioquia

Resumen

Nutritional immunology combines two areas of knowledge that did not interact until recently. One of the best examples studied to date is the bovine rumen. The symbiotic relationship between the host and rumen microorganisms can be altered causing a breakdown of immunological tolerance and imbalance of animal homeostasis. Dietary inclusion of supplements rich in non-structural carbohydrates is required for high yielding cows to meet their energy requirements. However, the use of those diets can lead to substantial changes in the rumen ecosystem, reducing the pH and promoting the development of subacute rumen acidosis. This generates lysis of gram-negative bacteria, release of lipopolysaccharides, breaking of immune tolerance, and activation of a cascade of inflammatory mediators with systemic effects that affect milk yield and quality. The gastrointestinal tract is the most important place where lipopolysaccharides are produced and its translocation mechanism from the rumen to peripheral circulation is still controversial. This review proposes a biological model integrating nutritional and immunological aspects of production, absorption, and mechanisms of action of lipopolysaccharides and its effects on milk production and compositional quality.

 

Acidosis Ruminal Sub-Aguda y carbohidratos no estructurales: un Modelo de Estudio en Inmunología Nutricional

La inmunología nutricional combina dos áreas del conocimiento que no interactuaban hasta hace algunos años. Uno de los mejores ejemplos estudiados hasta la fecha lo constituye el rumen bovino. La relación simbiótica entre hospedero y microorganismos ruminales puede alterarse provocando una ruptura de la tolerancia inmunológica y un desequilibrio en la homeostasis del animal. Para cubrir los requerimientos energéticos de las vacas de alta producción lechera es necesario incluir en la alimentación suplementos de elevado contenido en carbohidratos no estructurales.  Sin embargo, el uso de estas dietas puede provocar cambios sustanciales en el ecosistema ruminal, disminuyendo el pH y promoviendo el desarrollo de acidosis ruminal subaguda. Esto genera la lisis celular de las bacterias gram negativas, la liberación de lipopolisacáridos, la ruptura de la tolerancia inmunológica y la activación de una cascada de mediadores inflamatorios que tienen consecuencias sistémicas y afectan el rendimiento productivo del animal y la calidad composicional de la leche. El tracto gastrointestinal es el lugar más importante donde se producen los lipopolisacáridos, pero el mecanismo de translocación del rumen a la circulación periférica es aún controversial. En esta revisión de literatura se propone un modelo biológico que integra aspectos nutricionales e inmunológicos relacionados con la producción, absorción y mecanismos de acción de los lipopolisacáridos y los efectos sobre la producción y la calidad composicional de la leche.

 

Acidose ruminal subaguda e carboidratos não estruturais: um modelo de estudo em Imunologia Nutricional

A imunologia nutricional combina duas áreas de conhecimento que não interagiam até alguns anos atrás. Um dos melhores exemplos estudados até o presente consiste no rúmen bovino. A relação simbiótica entre hospedeiro e microrganismos do rúmen pode ser alterada causando uma quebra da tolerância imune e um desequilíbrio na homeostase do animal. Para satisfazer as necessidades energéticas de vacas de alta produção leiteira é necessário fornecer suplementos alimentares de elevado conteúdo em carboidratos não estruturais. No entanto, o uso dessas dietas pode provocar alterações importantes no ecossistema ruminal, reduzindo o pH e promovendo o desenvolvimento de acidose ruminal subaguda. Isto gera a lise de bactérias gram-negativas, a liberação de lipopolissacarídeos, a quebra da tolerância imune e a activação de uma cascata de mediadores inflamatórios que têm efeitos sistémicos e afetam o desempenho produtivo do animal e a composição do leite. O trato gastrointestinal é o lugar mais importante na produção dos lipopolissacarídeos, mas o mecanismo de translocação do rúmen para a circulação periférica é ainda controversa. Nesta revisão de literatura se propõe um modelo biológico que integra aspectos nutricionais e imunológicos relacionados com a produção, absorção e mecanismos de ação de os lipopolissacarídeos e os efeitos sobre a produção e composição do leite.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Luis Miguel Gómez, Universidad CES

Departamento de Investigación y Desarrollo, Grupo Nutri-Solla, Empresa Solla S.A. Carrera 42 No. 33-80 Itagui, Colombia.

Grupo de Investigación en Ciencias Agrarias-GRICA, Facultad de Ciencias Agrarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, AA 1226, Medellín, Colombia.

Grupo de Investigación Biogenesis, Facultad de Ciencias Agrarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, AA 1226, Medellín, Colombia.

Sandra Lucía Posada, Universidad de Antioquia

Grupo de Investigación en Ciencias Agrarias-GRICA, Facultad de Ciencias Agrarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, AA 1226, Medellín, Colombia

Martha Olivera, Universidad de Antioquia

Grupo de Investigación Biogenesis, Facultad de Ciencias Agrarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, AA 1226, Medellín, Colombia.

Referencias bibliográficas

1. Akira S, Uematsu S, Takeuchi O 2006. Pathogen recognition and innate immunity. Cell 2006; 124:783-801
2. Ametaj BN, Koenig KM, Dunn SM, Yang WZ, Zebeli Q, Beauchemin KA. Backgrounding and finishing diets are associated with inflammatory responses in feedlot steers. J Anim Sci 2009; 87:1314-1320.

3. Ametaj BN, Zebeli Q, Summera I. Nutrition, microbiota, and endotoxin-related diseases in dairy cows. Brazilian J Anim Sci 2010; 39:433-444

4. Anderson SD. Endotoxic and anaphylactic-type shock in steers from intravenous injection of Escherichia coli endotoxin and ruminal absorption of endotoxin. Thesis MSc Kansas State University, Manhattan, USA, 1984.

5. Argiles JM, Lopez-Soriano FJ, Evans RD, Williamson DH.Interleukin-1 and lipid metabolism in the rat. Biochem J 1989; 259:673-678

6. Aschenbach JR, Seidler T, Ahrens F, Schrodl W, Buchholz I, Garz B, Kruger M, Gabel G. Luminal salmonella endotoxin affects epithelial and mast cell function in the proximal colon of pigs. Scand J Gastroenterol 2003; 38:719-726

7. Baldwin RL. Use of isolated ruminal epithelial cells in the study of rumen metabolism. J Nutr 1998;128:293-296

8. Barcia AM, Harris HW. Triglyceride-rich lipoproteins as agents of innate immunity. Clin Infect Dis 2005; 41:S498-S503

9. Bauman DE, Griinari JM. Regulation and nutritional manipulation of milk fat: low-fat milk syndrome. Livest Prod Sci 2001;70:15-29

10. Bertok L. Effect of bile acids on endotoxin in vitro and in vivo (physicochemical defense). Bile deficiency and endotoxin traslocation. Ann N Y Acad Sci 1998; 851:408-410

11. Bertok L. Bile acids in physico-chemical host defense. Pathophysiol 2004; 11: 139-45

12. Cetin S, Dunklebarger J, Li J, Boyle P, Ergun O, Qureshi F, Ford H, Upperman J, Watkins S, Hackam DJ. Endotoxin differentially modulates the basolateral and apical sodium/proton exchangers (NHE) in enterocytes. Surgery 2004; 136:375-383

13. Chin AC, Flynn AN, Fedwick JP, Buret AG. The role of caspase-3 in lipopolysaccharide–mediated disruption of intestinal tight junctions. Canadian J Physiol Pharmacol 2006; 84:1043-1050

14. Drewe J, Beglinger C, Fricker G.Effect of ischemia on intestinal permeability of lipolysaccharides. Eur J Clin Invest 2001; 31:138-144

15. Elsasser TH, Caperna TJ, Li CJ, Kahl S, Sartin JL. Critical control points in the impact of the proinflammatory immune response on growth and metabolism. J Anim Sci 2008; 86:E105-25

16. Emmanuel DGV, Madsen KL, Churchill TA, Dunn SM, Ametaj BN. Acidosis and lipopolyssacharide from escherichia coli 055:B5 cause hyperpermeability of rumen and colon tissues. J Dairy Sci 1997; 90:5552-5557

17. Emmanuel DGV, Dunn SM, Ametaj BN. Feeding high proportions of barley grain stimulates an inflammatory response in dairy cows. J Dairy Sci 2008; 91:606-614

18. Feingold KR, Staprans I, Memon RA, Moser AH, Shigenaga JK, Doerrler W, Dinarello CA, Grunfeld C. Endotoxin rapidly induces changes in lipid metabolism that produce hypertriglyceridemia: low doses stimulate hepatic triglyceride production while high doses inhibit clearance. J Lipid Res 1992; 33:1765-1776

19. Gabay C, Kushner I. Acute phase proteins and other systemic responses to inflammation. N Engl J Med 1999; 340:448-454

20. Gaebel G, Martens H, Suendermann M, Galfi P. The effect of diet intraruminal pH and osmolarity on sodium chloride and magnesium absortion from the temporarily isolated and washed retículo-rumen of sheep. Exp Physiol 1987; 72:501-511
21. Gallay P, Heumann D, LeRoy D, Barras C, Glauser MP. Mode of action of anti-lipolysaccharide-binding protein antibodies for prevention of endotoxemic shock in mice. Proc Natl Acad Sci USA 1994; 91:7922-7926

22. Goshal S, Witta J, Zhong W, de Villiers W, Eckhardt E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res 2009; 50: 90-97

23. Goth A. Goth´s Medical pharmacology. 7 ed St Louis CB Morsby Co USA; 1974.

24. Graham C, Simmons NL. Functional organization of the bovine rumen epithelium. Am J Physiol Regul Integr Comp Physiol 2005; 288:R173-R181

25. Herrera E, Lasunción MA, Gomez-Coronado D, Aranda P, López-Luna P, Maier I. Role of lipoprotein lipase activity on lipoprotein metabolism and the fate of circulating triglycerides in pregnancy. Am J Obstet Gynecol 1988; 158:1575-1583

26. Hontecillas R, Wannemeulher MJ, Zimmerman DR, Hutto DL, Wilson JH, Ahn DU, Bassaganya-Riera J. Nutritional regulation of porcine bacterial-induced colitis by conjugated linoleic acid. J Nutr 2002; 132:2019-2027

27. Khafipour E, Krause DO, Plaizier JC. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. J Dairy Sci 2009; 92:1060-1070

28. Khafipour E, Li S, Plaizier JC, Krause DO. Rumen microbiome composition determined using two nutritional models of subacute rumen acidosis. Appl Environ Microbiol 2009; 75:7115-7124

29. Khovidhunkit W, Kim MS, Memon RA, Shigenaga JK, Moser AH, Feingold KR, Grunfeld C. Effects of infection and inflammation on lipid and lipoprotein metabolism: Mechanisms and consequences to the host. J Lipid Res 2004; 45: 1169-1196

30. Kleen JL, Hooijer GA, Rehage J, Noordhuizen JP. Subacute ruminal acidosis (SARA): a review. J Vet Med A Physiol Pathol Clin Med 2003; 50:406-414
31. Kushner I, Gewurz H, Benson MD. C-reactive protein and the acute phase response. J Lab Clin Med 1981; 97:739-749

32. Lacetera N, Scalia D, Franci O, Bernabucci U, Ronchi B, Nardone A. Effects of nonesterified fatty acids on lymphocyte function in dairy heifers. J Dairy Sci 2004; 87:1012-1014

33. Lassman BA. Release of endotoxin from rumen bacteria and endotoxin absorption from the rumen. Thesis MSc Kansas State University. Manhattan, USA, 1980.

34. Li S, Khafipour E, Krause DO, Kroeker A, Rodriguez-Lecompte JC, Gozho GN, Plaizier JC. Effects of subacute ruminal acidosis challenges on fermentation and endotoxins in the rumen and hindgut of dairy cows. J Dairy Sci 2012; 95:294-303

35. Lopez-Soriano FJ, Williamson DH. Acute effects of endotoxin (lipopolysaccharide) on tissue lipid metabolism in the lactating rat. The role of delivery of intestinal glucose. Mol Cell Biochem 1994; 141:113-120

36. Martínez-Subiela S, Tecles F, Parra MD, Ceron JJ. Proteínas de Fase Aguda: Conceptos básicos y principales aplicaciones clínicas en medicina veterinaria. An Vet 2001;17:97-114

37. Monk JM, Hou TY,Chapkin RS. Recent advances in the field of nutritional immunology. Exp Rev Clin Immunol 2011; 7:747-749

38. Nagaraja TG, Bartley EE, Fina LR, Anthony HD. Relationship of rumen gram-negative bacteria and free endotoxin to lactic acidosis in cattle. J Anim Sci 1978; 47:1329-1336

39. National Research Council. Nutrient Requirement of Dairy Cattle 2001; 7th edition. National Academic Press Washington USA

40. Neal MD, Leaphart C, Levy R, Prince J, Billiar TR, Watkins S, Li J, Cetin S, Ford H, Schreiber A, Hackam DJ. Enterocyte TLR-4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J Immunol 2006; 176:3070-3079
41. Nocek JE. Bovine acidosis: implications on laminitis. J Dairy Sci 1997; 80:1005–1028

42. Nocek JE, Russell JB. Protein and energy as an integrated system: Relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production. J Dairy Sci 1988; 71:2070–2107

43. Pekala PH, Kawakami M, Angus CW, Lane MD, Cerami A. Selective inhibition of synthesis of enzymes for de novo fatty acid biosynthesis by an endotoxin-induced mediator from exudate cells. Proc Natl Acad Sci USA 1983; 80:3743-3747

44. Peyraud JL, Delagarde R. Managing variations in dairy cow nutrient supply under grazing. Animal 2013; 7 :57-67

45. Raboisson D, Derville M, Herman N, Cahuzac E, Sans P, Allaire G. Herd-level and territorial-level factors influencing average herd somatic cell count in France in 2005-2006. J Dairy Res 2012; 79:324-332

46. Rosen FS, Skarnes RC, Landy M,Shear MJ. Inactivation of endotoxin by a humoral component. III role of divalent catión and a dialyzable component. J Exp Med 1958; 108:701-711

47. Rusu D, Loret S, Peulen O, Mainil J, Dandrifosse G. Immunochemical, biomolecular and biochemical characterization of bovine epithelial intestinal primocultures. BMC Cell Biol 2005; 6:42

48. Scalia D, Lacetera N, Bernabucci U, Demeyere K, Duchateau L, Burvenich C. In vitro effects of nonesterified fatty acids on bovine neutrophils oxidative burst and viability. J Dairy Sci 2006; 89:147-154

49. Steiger M, Senn M, Altreuther G, Werling D, Sutter F, Kreuzer M, Langhans W. Effect of a prolonged low dose lipopolysaccharide infusión on feed intake and metabolism in heifers. J Anim Sci 1999; 77:2523-2532

50. Steven DH, Marshall AB. Organization of the rumen epithelium. In Physiology of digestion and metabolism in the ruminant (ed AT Phillipson), pp 80-100. Oriel Press, New Casttle-upon-tyne, UK; 1969.

51. Stone WC. Nutritional approaches to minimize subacute ruminal acidosis and laminitis in dairy cattle. J Dairy Sci 2004; 8:E13–E26

52. Sweet MJ , Hume DA. Endotoxin signal transduction in macrophages. J Leukoc Biol 1996; 60: 8-26

53. Waldo DR. Extent and partition of cereal grain starch digestion in ruminants. J Anim Sci 1973; 37:1062-1074

54. Young CR, Wittum TE, Stanker LH, Perino LJ, Griffin DD, Littledike ET. Serum haptoglobin concentrations in a population of feedlot cattle. Am J Vet Res 1996; 57:138-141

55. Yu PH, Wright S, Fan EH, Lun ZR, Gubisne-Harberle D. Physiological and pathological implications of semicarbazide-sensitive amine oxidase. Biochimica et Biophysica Acta (BBA) –Mol Cell Biol Lipids 2003; 1647:193-199

56. Zebeli Q, Ametaj BN. Relationship between rumen lipopolysaccharide and mediators of inflammatory response with milk fat production and efficiency in dairy cows. J Dairy Sci 2009; 92:3800-3809

57. Zebeli Q, Dunn SM, Ametaj BN. Strong associations among rumen endotoxin and acute phase proteins with plasma minerals in lactating cows fed graded amounts of concentrate. J Anim Sci 2010; 88:1545-1553

Descargas

Publicado

2014-12-16

Cómo citar

Gómez, L. M., Posada, S. L., & Olivera, M. (2014). Sub-Acute Ruminal Acidosis and non-structural carbohydrates: a study model in nutritional immunology. CES Medicina Veterinaria Y Zootecnia, 9(2), 295–306. Recuperado a partir de https://revistas.ces.edu.co/index.php/mvz/article/view/3150