Fosfatasa alcalina intestinal: una enzima con propiedades antiinflamatorias

Autores/as

  • Jean Paul Lallès Director de Investigaciones, Institut National de la Recherche Agronomique, UR1341, Alimentation et Adaptations Digestives, Nerveuses et Comportementales (ADNC), 35590 Saint-Gilles, France
  • Jaime Parra Suescún Profesor. Universidad Nacional de Colombia Sede Medellín. Facultad de Ciencias Agropecuarias. Grupo BIOGEM. Colombia.

Resumen

Intestinal alkaline phosphatase: an enzyme with anti-inflammatory properties

Fosfatasse alcalina intestinal: uma enzima com propriedades anti-inflamatórias


Una de las principales funciones de la Fosfatasa Alcalina Intestinal (FAI) es la detoxificación de los lipopolisacáridos (LPS) bacterianos para controlar la inflamación intestinal. Recientes publicaciones indican que FAI participa  en la detoxificación de otros compuestos bacterianos (flagelina y motivos CpG de DNA) y de muchos nucleótidos libres (ATP, UDP). FAI está involucrada de manera directa en la recuperación tisular de la inflamación por la Resolvina E1.  La acción antiinflamatoria de FAI mejora indirectamente la función de la barrera intestinal e impacta la diversidad y la composición de la microbiota.  Diversas enfermedades intestinales, incluyendo enterocolitis necrótica, enfermedad celíaca y la inflamación crónica intestinal (o inflammatory bowel disease, IBD) están relacionadas con disminuciones en la expresión y actividad de FAI. Por otro lado, una elevada actividad de FAI en colon es sinónimo de procesos inflamatorios, debido a la elevada concentración de la isoforma tisular de Fosfatasa Alcalina no específica (FANE), y a la infiltración tisular por los neutrófilos (que también contienen FANE). En algunos ensayos en humanos se ha observado que la administración exógena de FAI reduce la inflamación intestinal/sistémica (dependiendo de la vía de administración).. En conclusión, la homeóstasis intestinal y la preservación de la salud dependen en gran medida de la capacidad de FAI para detoxificar los LPS y suprimir la inflamación metabólica inducida por estos. Sin embargo, es necesario realizar investigaciones a fondo sobre como los hábitos alimenticios pueden modificar la detoxificación de los diferentes compuestos proinflamatorios bacterianos y maximizar la actividad de FAI.

Abstract:

One of the main functions of Intestinal Alkaline Phosphatase (FAI) is to detoxify bacterial lipopolysaccharides (LPS) to control intestinal inflammation. Recent data indicate that FAI participates in the detoxification of other bacterial compounds (flagellin and DNA CpG motifs) and many free nucleotides (ATP, UDP). FAI is directly involved in the resolution of tissue inflammation mediated by Resolvin E1. The anti-inflammatory action of FAI indirectly improves the intestinal barrier function and affects the diversity of microbiota. Various intestinal diseases, including necrotizing enterocolitis, celiac disease and chronic intestinal inflammation (inflammatory bowel disease) are related to a decrease in the expression and activity of FAI. Furthermore, a high FAI activity in the colon is related with inflammatory processes due to high concentration of tissue nonspecific alkaline phosphatase isoform (FANE) and tissue infiltration by neutrophils, which also contain FANE. Exogenous administration of FAI reduces intestinal and/or systemic inflammation (depending on the route of administration). In conclusion, intestinal homeostasis and health largely depend on the capacity of FAI to detoxify LPS and remove LPS-induced metabolic inflammation. However, how our diets can actually limit gut pools of pro-inflammatory bacterial compounds and maximize IAP activity needs more in-depth investigations.

Resumo

Uma das principais funções da Fosfatasse Alcalina Intestinal (FAI) é a detoxificação dos lipopolissacarídeos (LPS) bacterianos para controlar a inflamação intestinal. Recentes publicações indicam que a FAI participa na detoxificação de outros compostos bacterianos (flagelina e motivos CpG do DNA) e de muitos nucleotídeos libres (ATP, UDP). A FAI está involucrada de forma direita na recuperação tissular da inflamação pela Resolvina E1 (RvE1). A ação antiinflamatória da FAI melhora indiretamente a função da barreira intestinal e impacta a diversidade e a composição da microbiota. Diversas doenças intestinais, incluindo enterocolitis necrótica, doença celíaca e a inflamação crônica intestinal (inflammatory bowel disease, IBD) estão relacionados com diminuições na expressão e atividade da FAI. De outro jeito, uma elevada atividade da FAI no cólon é sinônimo de processos inflamatórios, devido a elevada concentração da isoforma tissular da Fosfatasse Alcalina não especifica (FANE), e a infiltração tissular pelos neutrófilos (que também contém FANE). A administração exógena da FAI reduz a inflamação intestinal/sistêmica (dependendo da via de administração) incluindo uns poucos testes no homem. Em conclusão, a homeostase intestinal e a preservação da saúde dependem em grande medida da capacidade da FAI para detoxificar os LPS e suprimir a inflamação metabólica induzida por estes. Embora, é preciso realizar pesquisas bem feitas sobre como os costumes alimentares podem modificar a detoxificação dos diferentes compostos proinflamatórios bacterianos e maximizar a atividade da FAI.

 

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Jean Paul Lallès, Director de Investigaciones, Institut National de la Recherche Agronomique, UR1341, Alimentation et Adaptations Digestives, Nerveuses et Comportementales (ADNC), 35590 Saint-Gilles, France

Director de Investigaciones, Institut National de la Recherche Agronomique, UR1341, Alimentation et Adaptations  Digestives, Nerveuses et Comportementales (ADNC), 35590 Saint-Gilles, France

Jaime Parra Suescún, Profesor. Universidad Nacional de Colombia Sede Medellín. Facultad de Ciencias Agropecuarias. Grupo BIOGEM. Colombia.

Profesor. Universidad Nacional de Colombia Sede Medellín. Facultad de Ciencias Agropecuarias. Grupo BIOGEM. Colombia.

Referencias bibliográficas

1. Appleyard CB, Cruz ML, Isidro AA, Arthur JC, Jobin C, et al. Pretreatment with the probiotic VSL#3 delays transition from inflammation to dysplasia in a rat model of colitis associated cancer. Am J Physiol Gastrointest Liver Physiol 2011; 301:G1004-G1013.

2. Bowie RV, Donatello S, Lyes C, Owens MB, Babina IS, et al. Lipid rafts are disrupted in mildly inflamed intestinal microenvironments without overt disruption of the epithelial barrier. Am J Physiol Gastrointest Liver Physiol 2012; 302:G781-G793.

3. Bours MJ, Swennen EL, Di Virgilio F, Cronstein BN, Dagnelie PC. Adenosine 5_-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 2006; 112: 358-404.

4. Brun LR, Brance ML, Rigalli A. Lumenal calcium concentration controls intestinal calcium absorption by modification of intestinal alkaline phosphatase activity. Br J Nutr 2012; 108: 229-233.

5. Camilleri M, Madsen K, Spiller R, Greenwood-Van Meerveld B, Verne GN. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil 2012; 24: 503-512.

6. Campbell EL, MacManus CF, Kominsky DJ, Keely S, Glover LE, et al. Resolvin E1-induced intestinal alkaline phosphatase promotes resolution of inflammation through LPS detoxification. Proc Natl Acad Sci USA 2010; 107: 14298-14303.

7. Cani PD, Delzenne NM. The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des 2009; 15:1546-1558.

8. Chen KT, Malo MS, Moss AK, Zeller S, Johnson P, et al. Identification of specific targets for the gut mucosal defense factor intestinal alkaline phosphatase. Am J Physiol Gastrointest Liver Physiol 2010; 299: G467-G475.

9. de La Serre CB, Ellis CL, Lee J, Hartman AL, Rutledge JC, et al. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol 2010; 299: G440-G448.

10. De Lisle RC, Mueller R, Boyd M. Impaired mucosal barrier function in the small intestine of the cystic fibrosis mouse. J Pediatr Gastroenterol Nutr 2011; 53: 371-379.

11. Ebrahimi F, Malo MS, Alam SN, Moss AK, Yammine H, et al. Local peritoneal irrigation with intestinal alkaline phosphatase is protective against peritonitis in mice. J Gastrointest Surg 2011;15: 860-869.

12. Erridge C, Duncan SH, Bereswill S, Heimesaat MM. The induction of colitis and ileitis in mice is associated with marked increases in intestinal concentrations of stimulants of TLRs 2, 4, and 5. PLoS One 2010; 5(2): e9125.

13. Fruet AC, Seito LN, Rall VL, Di Stasi LC. Dietary intervention with narrow-leaved cattail rhizome flour (Typha angustifolia L.) prevents intestinal inflammation in the trinitrobenzene sulphonic acid model of rat colitis. BMC Complement Altern Med 2012; 12: 62.

14. Ghosh S, Decoffe D, Brown K, Rajendiran E, Estaki M, et al. Fish oil attenuates omega-6 polyunsaturated fatty acid-induced dysbiosis and infectious colitis but impairs LPS dephosphorylation activity causing sepsis. PLoS One 2013; 8(2): e55468.

15. Hansen GH, Rasmussen K, Niels-Christiansen LL, Danielsen EM. Dietary free fatty acids form alkaline phosphatase-enriched microdomains in the intestinal brush border membrane. Mol Membr Biol 2011; 28:136-144.

16. Haraikawa M, Sogabe N, Tanabe R, Hosoi T, Goseki-Sone M. Vitamin K1 (phylloquinone) or vitamin K2 (menaquinone-4) induces intestinal alkaline phosphatase gene expression. J Nutr Sci Vitaminol (Tokyo) 2011; 57: 274-279.

17. Huizinga R, Kreft KL, Onderwater S, Boonstra JG, Brands R, et al. Endotoxin- and ATP-neutralizing activity of alkaline phosphatase as a strategy to limit neuroinflammation. J Neuroinflammation 2012; 9: 266.

18. Kaliannan K, Hamarneh SR, Economopoulos KP, Nasrin Alam S, Moaven O, et al. Intestinal alkaline phosphatase prevents metabolic syndrome in mice. Proc Natl Acad Sci USA 2013; 110: 7003-7008.

19. Kats S, Brands R, Hamad MA, Seinen W, Scharnhorst V, et al. Prophylactic treatment with alkaline phosphatase in cardiac surgery induces endogenous alkaline phosphatase release. Int J Artif Organs 2012; 35: 144-151.

20. Kaunitz JD, Akiba Y. Purinergic regulation of duodenal surface pH and ATP concentration: implications for mucosal defence, lipid uptake and cystic fibrosis. Acta Physiol (Oxf) 2011; 201: 109-116.

21. Kempson SA, Kim JK, Northrup TE, Knox FG, Dousa TP. Alkaline phosphatase in adaptation to low dietary phosphate intake. Am J Physiol 1979; 237: E465-E473.

22. Kumar RS, Kanmani P, Yuvaraj N, Paari KA, Pattukumar V, et al. Lactobacillus plantarum AS1 isolated from south Indian fermented food Kallappam suppress 1,2-dimethyl hydrazine (DMH)-induced colorectal cancer in maleWistar rats. Appl Biochem Biotechnol 2012; 166: 620-631.

23. Lalles JP. Intestinal alkaline phosphatase: multiple biological roles in the maintenance of intestinal homeostasis, and modulation by diet. Nutr Rev 2010; 68: 323-332.

24. Liu Z, Shi C, Yang J, Zhang P, Ma Y, et al. Molecular regulation of the intestinal epithelial barrier: implication in human diseases. Front Biosci 2011;16: 2903-2909.

25. Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2007; 2: 119-129.

26. Lukas M, Drastich P, Konecny M, Gionchetti P, Urban O, et al. Exogenous alkaline phosphatase for the treatment of patients with moderate to severe ulcerative colitis. Inflamm Bowel Dis 2010; 16: 1180-1186.

27. Lynes MD, Widmaier EP. Involvement of CD36 and intestinal alkaline phosphatases in fatty acid transport in enterocytes, and the response to a high-fat diet. Life Sci 2011; 88: 384-391.

28. Malo MS, Alam SN, Mostafa G, Zeller SJ, Johnson PV, et al. Intestinal alkaline phosphatase preserves the normal homeostasis of gut microbiota. Gut 2010; 59: 1476-1484.

29. Martinez-Moya P, Ortega-Gonzalez M, Gonzalez R, Anzola A, Ocon B, et al. Exogenous enzyme protection in colonic inflammation and reduces bacterial translocation in rats. Pharmacol Res 2012; 66: 144-153.

30. McConnell RE, Higginbotham JN, Shifrin Jr DA, Tabb DL, Coffey RJ, et al. The enterocyte microvillus is a vesicle-generating organelle. J Cell Biol 2009; 185: 1285-1298.

31. Mineo H, Morikawa N, Ohmi S, Ishida K, Machida A, et al. Ingestion of potato starch containing esterified phosphorus increases alkaline phosphatase activity in the small intestine in rats. Nutr Res 2010; 30: 341-347.

32. Molnar K, Vannay A, Szebeni B, Banki NF, Sziksz E, et al. Intestinal alkaline phosphatase in the colonic mucosa of children with inflammatory bowel disease. World J Gastroenterol 2012; 18: 3254-3259.

33. Molnar K, Vannay A, Sziksz E, Banki NF, Györffy H, et al. Decreased mucosal expression of intestinal alkaline phosphatase in children with coeliac disease. Virchows Arch 2012; 460: 157-161.

34. Moreira AP, Texeira TF, Ferreira AB, Peluzio Mdo C, Alfenas R de C. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br J Nutr 2012; 108: 801-809.

35. Moss AK, Hamarneh SR, Mohamed MM, Ramasamy S, Yammine H, et al. Intestinal alkaline phosphatase inhibits the proinflammatory nucleotide uridine diphosphate. Am J Physiol Gastrointest Liver Physiol 2013; 304: G597-G604.

36. Peters E, van Elsas A, Heemskerk S, Jonk L, van der Hoeven J, et al. Alkaline phosphatase as a treatment for sepsis-associated acute kidney injury. J Pharmacol Exp Ther 2013; 344: 2-7.

37. Pickkers P, Heemskerk S, Schouten J, Laterre PF, Vincent JL, et al. Alkaline phosphatase for treatment of sepsis-induced acute kidney injury: a prospective randomized double-blind placebo-controlled trial. Crit Care 2012; 16: R14.

38. Popkin BM, Adair LS, Ng SW. Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev 2012; 70: 3-21.

39. Prakash UN, Srinivasan K. Beneficial influence of dietary spices on the ultrastructure and fluidity of the intestinal brush border in rats. Br J Nutr 2010; 104: 31-9.

40. Ramasamy S, Nguyen DD, Eston MA, Alam SN, Moss AK, et al. Intestinal alkaline phosphatase has beneficial effects in mouse models of chronic colitis. Inflamm Bowel Dis 2011;17: 532-542.

41. Rentea RM, Liedel JL, Fredrich K, Welak SR, Pritchard Jr KA, et al. Intestinal alkaline phosphatase administration in newborns decreases systemic inflammatory cytokine expression in a neonatal necrotizing enterocolitis rat model. J Surg Res 2012; 177: 228234.

42. Rentea RM, Liedel JL, Welak SR, Cassidy LD, Mayer AN, et al. Intestinal alkaline phosphatase administration in newborns is protective of gut barrier function in a neonatal necrotizing enterocolitis rat model. J Pediatr Surg 2012; 47: 1135-1142.

43. Riggle KM, Rentea RM, Welak SR, Pritchard Jr KA, Oldham KT, et al. Intestinal alkaline phosphatase prevents the systemic inflammatory response associated with necrotizing enterocolitis. J Surg Res 2012; 180: 21-26.

44. Scarminio V, Fruet AC, Witaicenis A, Rall VL, Di Stasi LC. Dietary intervention with green dwarf banana flour (Musa sp AAA) prevents intestinal inflammation in a trinitrobenzene sulfonic acid model of rat colitis. Nutr Res 2012; 32: 202-229.

45. Serhan CN, Petasis NA. Resolvins and protectins in inflammation resolution. Chem Rev 2011; 111: 5922-5943.

46. Shifrin Jr DA, McConnell RE, Nambiar R, Higginbotham JN,Coffey RJ, et al. Enterocyte microvillus-derived vesicles detoxify bacterial products and regulate epithelial-microbial interactions. Curr Biol 2012; 22: 627-631.

47. Tran TT, Poirier H, Clement L, Nassir F, Pelsers MM, et al. Lumenal lipid regulates CD36 levels and downstream signaling to stimulate chylomicron synthesis. J Biol Chem 2011; 286 (28): 25201-25210.

48. Tyagi A, Kumar U, Reddy S, Santosh VS, Mohammed SB, et al. Attenuation of colonic inflammation by partial replacement of dietary linoleic acid with _-linolenic acid in a rat model of inflammatory bowel disease. Br J Nutr 2012; 108: 1612-1622.

49. van Ampting MT, Schonewille AJ, Vink C, Brummer RJ, van der Meer R, et al. Damage to the intestinal epithelial barrier by antibiotic pretreatment of salmonellainfected rats is lessened by dietary calcium or tannic acid. J Nutr 2010; 140: 2167-2172.

50. Whitehouse JS, Riggle KM, Purpi DP, Mayer AN, Pritchard Jr KA, et al. The protective role of intestinal alkaline phosphatase in necrotizing enterocolitis. J Surg Res 2010; 163: 79-85.

Descargas

Publicado

2014-07-29

Cómo citar

Lallès, J. P., & Parra Suescún, J. (2014). Fosfatasa alcalina intestinal: una enzima con propiedades antiinflamatorias. CES Medicina Veterinaria Y Zootecnia, 9(1), 94–103. Recuperado a partir de https://revistas.ces.edu.co/index.php/mvz/article/view/2995
Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas