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SUMMARY

E

Uses of entropy in medical research
Usos de la entropía en la investigación médica

 NEAL ALEXANDER1, GABRIEL  PARRA-HENAO2
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ntropy is a basic concept of physics, with analogues in communication theory and other
fields.  We review applications of entropy in medical research, under three headings of increasing

scientific profundity.  First, we consider the use of entropy as a summary statistic to measure the
diversity of ecological and other systems.  We emphasize the exponential of the Shannon entropy as a
dispersion index, illustrated in sample size determination for pupal surveys of the dengue vector
mosquito Aedes aegypti.  Secondly, we review maximum entropy as a method of statistical modelling,
illustrated by spatial analysis of the malaria vector mosquito Anopheles nuñeztovari.  Finally, we
review the postulate of Extreme Physical Information (EPI), which elegantly yields many key laws of
physics, including general relativity.  EPI has been applied to some biological problems, such as
predicting rates of cancer growth, and we suggest that it may have fruitful applications in immunology.
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entropy currently implies decay; a kind of inevita-
ble ageing. Some philosophers and artists see it as
a key concept for our current society, in which the
control of information is vital, but inevitably
imperfect (1,2). The art critic Robert Hughes said
of Andy Warhol: “His ideal society has crystallized
around him and learned to love his entropy” (3).

In science, the term ‘entropy’ was introduced by
Clausius in 1865, meaning a ratio of heat to
temperature, denoted S.  According to the second
law of thermodynamics, heat flows spontaneously
from hot bodies to cold ones, and not the reverse,
and this implies that S always increases.  In 1877,
Boltzmann used a molecular approach to derive an
equivalent form, which depends on the number W
of microscopic states consistent with the
macroscopic state of a system: S=klog(W), where k
is Boltzmann’s constant.  This can be interpreted as a
measure of disorder in the system, or ignorance of it.

In the twentieth century the concept of entropy
was used as a measure of information, which is
currently applied in telecommunications and other
information technologies (4).  Recently a theory has
been derived which encompasses these concepts
as special cases of Fisher information (5).

In the current paper we describe uses of entropy in
medical research.  We start with its use as a simple
summary statistic of disorder in a series of cate-
gories, and proceed to the postulate of Extreme
Physical Information (EPI) as a basic scientific
principle.

2. ENTROPY AS A
MEASURE OF
COMPLEXITY OF
ECOLOGICAL SYSTEMS

In ecology, entropy is used under the name of
Shannon-Wiener index to measure diversity, or niche
breadth (6), and has the following form:

Dengue
Biomedical research

RESUMEN

La entropía es un concepto básico en la física, con conceptos
análogos en la teoría de las comunicaciones y en otros
campos.  Revisamos las aplicaciones de la entropía en la
investigación médica, bajo tres lineamientos de creciente
profundidad científica. Primero, consideramos el uso de la
entropía como una herramienta estadística para medir la
diversidad ecológica y de otros sistemas. Se enfatiza el
carácter exponencial de la entropía de Shannon como un
índice de dispersión, el cual es ilustrado por su uso en las
encuestas de pupas del mosquito vector del dengue Aedes
aegypti para la estimación de tamaños de muestra.
Segundo, revisamos la entropía máxima como un método
de modelación estadística.  Se ilustra mediante el análisis
espacial del mosquito vector de malaria Anopheles
nuñeztovari. Finalmente, revisamos el postulado
Información Física Extrema (EPI), el cual soporta varias
leyes físicas, incluyendo la de la relatividad. EPI  ha sido
aplicado a algunos problemas biológicos, como por ejemplo
para predecir tasas de crecimiento de cáncer. Sugerimos
que puede tener aplicaciones útiles en inmunología.

PALABRAS CLAVE

Entropía
Información
Malaria
Dengue
Investigación médica

1. INTRODUCTION

The word entropy derives from the Greek entropía,
meaning a turn inwards, a sense it retains in the
ophthalmological term ‘entropion’. In common use,
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H´ = - Σ p log(p)

The symbol Σ means a sum of the various values of
p.  For example, to measure species diversity, each
p is the proportion of individuals in each species.
The alternative Brillouin index has a different form,
but Stirling’s formula can be used to show that it is
numerically similar to H´, especially for large sample
sizes(7).  Here we have included a negative sign in
the definition of H´.  Without this, H´ becomes a
measure of information, which can be defined as
the negative of entropy ‘negentropy’(8).  Similar
applications have been made to antigenic and
genetic diversity (9-11).

The index H´ is mathematically identical to the
Shannon entropy (12).  In communication theory,
each p represents the relative frequency of a
symbol, for example a letter of the alphabet.
Whether in ecology or communication theory, the
entropy is greater if the distribution is more uniform.
The base of logarithms determines the units of H´.
For base 2, the units are bits (abbreviation of ‘binary
digit’).  For base 10, the units are decits, and for
base e they are nats (13).

2.1 Application to sampling of Aedes
breeding sites

Dengue is a viral illness with 50-100 million cases
each year, of whom 0,25-0,5 million have the severe
form, dengue haemorrhagic fever (14).  Given the
current lack of a vaccine, the only preventive me-
thod is control of the vectors, which are mosquitoes
of the genus Aedes, principally Aedes aegypti. As
breeding sites, these mosquitoes use a wide variety
of water-holding containers.  To make control more
efficient, it is possible to think in terms of ‘key’ con-
tainer types, which contain a majority of immature
forms (larvae and pupae) (15). These key types
would be the priorities for control efforts.

As part of an international project to develop
methods for Aedes control (16), there arose a need
for a method for determining sample size to con-
fidently identify key container types.  In statistical

terms, this task was more complicated than most
sample size calculations.  It deals not with a single
parameter (such as a mean or proportion) but,
rather, a distribution over an indefinite number of
container types.  Moreover, the method had to be
sufficiently simple for use by control personnel, who
do not necessarily have mathematical or statistical
training.

It was expected that, where pupae were more
concentrated in fewer container types, the sample
size would be smaller. The use of entropy (the
Shannon-Wiener index, H) was investigated for
measuring the concentration of pupae, and for
predicting sample size.  More specifically, the expo-
nential of H´ was used; conventionally denoted N1.
The use of the exponential removes the dependency
on the base of logarithms, and yields a dispersion
index with the following simple characteristics:

• The dispersion index N1 is larger when the pupae
are distributed more uniformly between the con-
tainer types.

• The maximum value of N1 equals the number of
container types, and is reached when the same
proportion of pupae are found in each type.  For
example, with four container types, an even
distribution would have four proportions of 0,25,
and N1 would be 10-4 x log10(4)/4= 4. Any other
distribution gives a lower value. For example,
20 % in each of three types, and 40 % in the
fourth, gives N1=10-(3 x 0.2 log10(0.2)+ 0.4 log10(0.4)) ≈ 3.8.

• A uniform distribution between a smaller number
of container types yields a smaller value of N1

than does a uniform distribution between a larger
number of types.  For example, we already saw
that four container types, each with a quarter of
pupae, would have N1=4.  Similarly, five contai-
ner types each with a fifth of the pupae would
have N1=5.

• A container type with very few pupae does not
substantially affect N1.

Figure 1 shows examples of the dispersion index N1

with data from studies done in Colombia (Barran-



68

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

Revista CES MEDICINA  Volumen 21 No.1  Enero-Junio / 2007

quilla) (17), Venezuela (Trujillo) (18) and Thailand
(Chiang Mai and Khon Kaen) (19).  Each study did
multiple surveys.  In the Colombian survey number
4, almost all the pupae were found in ground tanks
(albercas or tanques bajos), and this survey has the
smallest dispersion index among the six shown.  At
the other extreme, the highest dispersion index is

N1=8,3 found in the Thai survey number 1.  In this
survey, four container types had more than 10 %
of pupae, although none had more than 22 %.  It
was expected that, in such situations of high
dispersion index, it would be more difficult to defi-
ne the key container types, i.e. that a larger sample
size would be needed.

Figure 1. THE DISTRIBUTIONS OF Aedes aegypti PUPAE OVER CONTAINER TYPES IN SIX SURVEYS.
THE EXPONENTIAL OF SHANNON ENTROPY IS SHOWN AS A DISPERSION INDEX (N1).

In order to evaluate the use of the dispersion index
(N1) for determining sample size, the index was
related to the repeatability of surveys.  For this
purpose, repeatability was defined in terms of two
surveys which were simulated by drawing from the
original data of each study.  In the first simulated
survey, the key container types were identified as
those in which 70 % of pupae were found.  The
value of 70 % was a consensus value agreed by the

investigators of the Aedes control project.  Then,
the percentage of pupae in those same types was
evaluated in the second simulated survey.  This
percentage was defined as the repeatability.  The
simulation process was repeated 1 000 times, in
order to examine the distribution of repeatability.
Ideally, the repeatability would almost always be
close to 70 %: this would indicate the key contai-
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ner types can be identified consistently between
surveys.  Figure 2 shows that the repeatability is

Figure 2. INVERSE RELATION BETWEEN REPEATABILITY OF Aedes PUPAL SURVEYS (VERTICAL AXIS)
AND THE DISPERSION INDEX (N1, HORIZONTAL AXIS).  FOR THE VERTICAL AXIS, A LOW VALUE
PERCENTILE OF THE DISTRIBUTION WAS USED (ARBITRARILY CHOSEN AS THE 20TH), SO THAT THE

REPEATABILITY HAS A HIGH PROBABILITY (80%) OF BEING AT LEAST AS HIGH AS THE VALUE PLOTTED.
SAMPLES SIZES WERE 10 (O), 25 (D), 50 (+) OR 100 (×) HOUSES POSITIVE FOR PUPAE. THE DASHED

LINES SHOW FITS FROM REGRESSING THE LOGISTIC TRANSFORMATION OF THE REPEATABILITY ON THE
DISPERSION INDEX. SEE THE TEXT OF SECTION 2.1 FOR MORE DETAILS.

greater a) If the sample size is greater, and b) if
the dispersion index (entropy) is less.

This analysis was used to construct a flow diagram
for determination of sample size (20).  It requires a
minimum of 10 houses positive for pupae (i.e., with
at least one pupa).  If the pupae in these ten houses
have a dispersion index (N

1
) less than 2, the survey

can be halted and the key container types identified.
Otherwise, the survey should continue until a point
defined by the values of N1 at the following steps of
the flow diagram (after 25, 50 and 100 positive
houses).  The method also permits the investigators
to join categories.  For example, in the Thai survey
number 2, ‘small jar’ could be joined with ‘jar’.

3. STATISTICAL ANALYSIS
BY MAXIMUM ENTROPY

Likelihood is a fundamental concept in statistics (21),
and means the probability of the data, under the
assumption of a particular probability distribution.
Analysis by maximum likelihood involves finding the
parameters which maximize the likelihood of the
data, for the assumed type of distribution.  Analysis
by maximum entropy is complementary.  Rather
than starting with a distribution and estimating
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the maximum entropy method was generally supe-
rior to GARP in terms of a) the proportion of known
localities which were successfully predicted, and
b) the area under the curve (AUC) of the receiver
operating characteristic (ROC), which is a summary
measure of sensitivity and specificity.  In the
following section we will apply the same maximum
entropy method to a mosquito vector of malaria.

3.1 Prediction of the presence of
Anopheles (Nyssorhynchus)
nuñeztovari Gabaldon, 1940.

Anopheles nuñeztovari is the principal malaria vector
in western Venezuela and northern Colombia, and
has been incriminated as a vector in Peru, Brazil
and Surinam (30).  Twenty-three georeferenced
locations of Anopheles nuñeztovari in Colombia were
obtained directly in the field using a GPS (Garmin
III) in the departments of Antioquia and Cordoba.
The adult mosquitoes were collected directly in
houses resting on walls.  Seventy-seven other
locations were extracted from published reports
(30,34).

The analysis used the software made available by
Phillips et al.(27), and with the same 14 predictor
variables.  Twelve of these were obtained from the
Intergovernmental Panel on Climate Change and
relate to temperature, precipitation, cloud cover,
frost frequency, and vapour pressure.  The remai-
ning two variables were elevation, and a classification
of ‘major habitat type’, which was intended to
reflect vegetation.  The map of predictions is shown
in Figure 3.

The predictions of the distribution of An. Nuñeztovari
show generally good agreement with the known
distribution. In particular the predictions of presence
in the east of Panama, northern Colombia, western
Venezuela, the Guyanas and the Brazilian
Amazonian basin coincided with almost all the
known niches of the species.  However, there are

parameters, it treats the parameters as constraints,
and finds the distribution with the maximum
entropy.  For example, we may specify values of
the mean and standard deviation (e.g. the sample
mean and standard deviation of a particular
dataset).  Then, the normal (Gaussian) distribution
has higher entropy than any other.  More formally,
certain types of problems yield equivalent solutions
by maximum likelihood or maximum entropy (22),
although one method or the other may be more
convenient.  Until recently, maximum entropy
analysis has been used mostly in certain fields such
as physics (23), linguistics (24) and bioinformatics
(25).

Recently, Phillips et al (26,27) presented a method
for spatial analysis by maximum entropy, for
prediction of species’ geographic distributions.  The
method requires a set of locations in which the
species has been found.  This type of data is called
‘presence only’, because it does not contain
locations in which the species was sought but not
found.  Prediction is done on the basis of environ-
mental or other geo-referenced variables, which are
available in the region for which the predictions are
to be made.  The results are usually reported in
terms of relative probability, so that the most likely
predicted location for the species has a value of
100 %.  One limitation of the method is possible
sampling bias, i.e. the locations sampled tending to
have certain environmental characteristics, perhaps
associated with being more accessible.  The authors
state that their approach could, in the future, be
extended to presence/absence data, although this
is not done in their publications.

Phillips et al. illustrated their approach using data
from South America on the sloth Bradypus variegatus
and the rodent Microryzomys minutus. They
compared the maximum entropy method to the
Genetic Algorithm for Rule-Set Prediction (GARP),
which can also use presence-only data, and which
has been used to predict the distributions of several
species, including those of insect vectors of
leishmaniasis and Chagas’ disease in South America
(28,29).  Phillips et al. found that, in their example,
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some exceptions.  For the north of Peru and Bolivia
the prediction is weak, possibly due to those areas’
environmental conditions (mainly dry with
xerophytic vegetation), which are totally different
to those of other areas (tropical rain forests with
high levels of precipitation). The actual presence of
An. nuñetovari in those areas could be explained as
a species complex with cryptic forms and different
cytotypes. Finally, predictions in Central America
and some Caribbean islands should be tested: those
areas could be part of the species’ fundamental
niche.

4. EXTREME PHYSICAL
INFORMATION

So far we have seen the use of entropy in statistical
methods.  Now we will consider the application to
medical research of a physical principle which is
based on a concept closely linked to that of entropy.

4.1 Fisher Information

Named after the statistician and geneticist Ronald
Fisher, Fisher information is best known as a
measure of statistical uncertainty in the estimation
of parameters.  For example, in the case of a single
parameter, the Fisher information is the reciprocal
of the square of its standard error.

Frieden (5) shows that Fisher information is a
generalization of the thermodynamic and Shannon
entropies and therefore calls it a ‘mother’
information measure.  He postulates the principle
of Extreme Physical Information (EPI), which states
that any measurement extracts a quantity of Fisher
information from the observed object, and that this
quantity is an extremum (a minimum or maximum),
given the constraints of the problem.  In physical
applications, these constraints could be conserva-
tion principles.  For example, from the principles of
EPI and conservation of momentum, Frieden deri-
ves general relativity. Another example is the
derivation of the Cramér-Rao lower bound (i.e. the
lowest possible statistical variance of an unbiased
parameter estimate) as an instance of the Heisen-
berg uncertainty principle (i.e. the quantum
mechanical observation that, for example, the po-
sition and velocity of a particle cannot be
simultaneously known with exact precision).  That
EPI can elegantly yield such important results
suggests that it has an important role in physics.

Furthermore, Frieden and his colleagues have
applied EPI to some examples in other fields,
including biomedicine. Gatenby & Frieden (35)
applied EPI to tumour growth.  The ‘information’

Figure 3. PREDICTION BY MAXIMUM
ENTROPY OF THE DISTRIBUTION OF THE
MALARIA VECTOR Anopheles nuñeztovari.

WHITE SQUARES INDICATE LOCATIONS WHERE
THIS SPECIES WAS FOUND.  WARMER COLOURS
INDICATE A HIGHER PREDICTED LIKELIHOOD

OF PRESENCE, NORMALIZED TO HAVE A
MAXIMUM VALUE OF 100.
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in this case is signalled between malignant and
healthy cells, and ‘protons appear to be the
dominant messengers because increased glucose
uptake and excessive secretion of acid into the
extracellular spaces are observed in the vast majority
of clinical cancers.’  The authors predicted that in
vivo growth rate would follow a power law.  This is
less than the maximum possible rate, which would
be exponential.  The authors extrapolate their
predictions to the distribution of tumour size, and
show a close fit to published data.  Their interpre-
tation is that the malignant cells forego maximum
growth in order to minimize the information available
to their benign neighbours on the time at which
they became malignant.  This work suggests that
EPI could have other physiological applications.

4.2. The immune system as an
information processor

‘Antigens bear Shannon-type information intrin-
sically, as a consequence of their particular molecular
organization’, according to Atlan and Cohen(36).
Such statements seem to promise, for the
immunological network, the same kind of informatic
theory that Shannon developed for telecommu-
nication networks.  Unfortunately, however, much
of this literature is rather verbose and does not
attempt to quantify immunological phenomena.
However, it may be possible to use the principle of
EPI to make predictions and indicate new experi-
mental directions.

Gatenby & Frieden’s interpretation of their tumour
growth analysis was that malign cells minimize the
information they provide to their benign neighbours
on the time of origin of the tumour.  This may pro-
vide a clue to some aspects of parasite immunolo-
gy.  For example, parasite development and growth
may be optimized to balance speed against stealth
in evading the immune system.  Immune evasion is
ubiquitous in parasites (37), with its mode depending
on the particular immune cells and molecules
available to the host.  These, together with the subs-
tances which the parasite exposes to the host,
would constitute the signalling mechanism

corresponding to the much simpler lactic acid mo-
lecules in the cancer growth example.

In order to investigate this, a useful model parasite
would be one which occurs in different locations of
the body in which different immune responses may
be available.  For example, metacercariae of the
digenean helminth Paragonimus westermani usually
develop into adults in the lungs of the host, but
may do so in several other locations including
muscle, subcutaneous tissues, spleen, liver, perito-
neum, urinary tract, and central nervous system
(38).  Comparative data on the rates of develop-
ment, and the signalling molecules present in
different locations, could enable an analysis similar
to that done for cancer growth, although most of
the information-bearing molecules would be more
complex.  Finally, another possible application of
EPI would be migration rates of parasites through
tissue, and this is currently the subject of further
investigation.

5. DISCUSSION

We have seen three uses of entropy in medical
research, in order of increasing profundity.  The first
is the use of Shannon entropy as a summary
statistic of dispersion across a number of categories
(section 2).  The second use of entropy is a principle
of statistical analysis, known as maximum entropy
(section 3).  This approach seeks the distribution
which has the maximum entropy, subject to the
conditions of the problem.  This is, in a strict sense,
complementary to that of the more well known
method of maximum likelihood.  Although currently
little known outside a few specialties, such as
bioinformatics, we saw an application to spatial
analysis in ecology (27).  This powerful technique
has several advantages over alternatives such as
GARP, and is easily available via the software made
freely available by the authors.  Nevertheless, an
obstacle to the wider use of the method is the
complexity of identifying the distribution which has
the maximum possible entropy.  Algebraic solution
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requires mathematical techniques such as calculus
of variations, and is more difficult than the typical
maximum likelihood problem of estimating a small
number of scalar parameters.  On the other hand,
in practice, solutions can be derived by numerical
iteration.

A strong rationale for maximum entropy analysis is
its correspondence to a principle which elegantly
yields many basic components of physics, namely
Extreme Physical Information (EPI).  This states that
any physical measurement extracts a quantity of
Fisher information from the observed object, and
that this quantity is an extremum (a minimum or
maximum).  This principle was postulated by Frieden
(5), who has shown that Fisher information — a
quantity better known in statistics — is a kind of
‘mother’ information which can be used to derive
many physical laws, such as general relativity, and
the Klein-Gordon equation.  In biology, EPI has also
had some successful applications, in particular in
explaining rates of tumour growth, and we can look
forward to its continued fruitful use in medical
research.
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