COCAÍNA PRENATAL Y CONSUMO DE COCAÍNA DE RATONES ADULTOS JOVENES (Prenatal Cocaine and Cocaine Consumption in Young Adult Mice)

Maria Del Pilar Santacruz, Miguel Ángel Castellanos Gil, Rosario Marrero Quevedo, Juan Manuel Bethencourt Perez, Wenceslao Pénate Castro

Resumen


Con el propósito de evaluar los efectos de la Exposición Prenatal de Cocaína –EPC- (25 y 50 mg/kg/día) desde el 8 hasta el 21 día de gestación, en el consumo de cocaína oral en ratones hembras y machos en la adultez temprana (7ª semana de edad), se realizó un estudio experimental factorial mediante el modelo de “elección libre de dos botellas” que mide el consumo en mililitros. Se evaluó el consumo durante 14 días consecutivos a partir de la 7ª semana de edad. Para el análisis del consumo se utilizó el MANOVA de medidas repetidas y se encontró que la EPC 50mg/kg/día incrementó el consumo de cocaína oral en ratones hembras y machos adultos-jóvenes tanto en la fase de adquisición como la de mantenimiento. Y la EPC 25mg/kg/día aumentó el consumo únicamente en los machos en la fase de mantenimiento, mostrando la mayor susceptibilidad de estos a la EPC, en cambio el alto consumo de cocaína observado en las hembras no fue dosis-relacionado, por lo que se puede atribuir a factores situacionales. De esta forma se observa como la EPC en las dos dosis evaluadas incrementa el consumo de cocaína oral en la adultez temprana en los ratones; la dosis alta (50mg/kg) el consumo de hembras y machos, y la dosis baja (25mg/kg) incrementa el consumo únicamente en los machos. Se observa que los efectos están relacionados a la dosis y que los machos son más vulnerables a los efectos de la EPC.

Palabras clave: Exposición prenatal, consumo de cocaína, fase de adquisición y mantenimiento.

 

Abstract

To evaluate the effects of Prenatal Exposure of Cocaine-EPC- (25 or 50 mg / kg / day) from 8-21 day of gestation, on oral cocaine use in female and male mice in early adulthood; was used the test of "free choice of two bottles" that measures the oral cocaine consumption in milliliters. This was evaluated for 14 consecutive days from the 7th week of age. Repeated measures MANOVA was used for the analysis of consumption. It was found that EPC 50mg/kg/day increased oral cocaine consumption in female and young adult male mice both in the acquisition and maintenance phases. And the EPC 25mg/kg/day increased the consumption only in the males in the maintenance phase, showing the greater susceptibility of these to the EPC, whereas the high cocaine consumption observed in the females was not dose-related, which can be attributed to situational factors. In this way it is seen how the EPC in the two doses evaluated increases oral cocaine consumption in early adulthood in mice; the high dose (50mg / kg) the consumption of females and males and the low dose (25mg / kg) increases the consumption only in males. It is observed that the effects are dose related and that males are more vulnerable to the effects of EPC.

Key Words: Prenatal Exposure, cocaine consumption, acquisition and maintenance phase.

DOI: http://dx.doi.org/10.21615/cesp.10.1.5


Palabras clave


Exposición prenatal, consumo de cocaína, fase de mantenimiento.

Citas


Ackerman, J.P., Riggins, T. y Black, M.M. (2010). A review of the effects of prenatal cocaine exposure among school-aged children. Pediatrics, 125, 554-565. doi:10.1542/peds.2009-0637.

Badanich, K.A., Becker, H.C. y Woodward, J.J. (2011). Effects of chronic intermittent ethanol exposure on orbitofrontal and medial prefrontal cortex-dependent behaviors in mice. Behavior Neuroscience, 125, 879-91. doi: 10.1037/a0025922.

Bennett, D., Bendersky, M. y Lewis, M. (2007). Preadolescent health risk behavior as a function of prenatal cocaine exposure and gender. Journal of Developmental & Behavior Pediatrics, 28, 467-472. doi: 10.1097/DBP.0b013e31811320d8

Brunton, P.J. (2015). Programming the brain and behaviour by early life stress: A focus on neuroactive steroids. Journal of Neuroendocrinology. doi:10.1111/jne.12265. Recuperado de: http://onlinelibrary.wiley.com/doi/10.1111/jne.12265/pdf

Butler, T.R., Ariwodola, O.J. y Weiner, J.L. (2014). The impact of social isolation on HPA axis function, anxiety-like behaviors and ethanol drinking. Frontiers in Integrative Neuroscience, 2, 1-11. doi: 10.3389/fnint.2013.00102

Chaplin, T.M, Visconti K.J., Molfese, P.J., Susman, E.J., Klein, L.C., Sinha, R. y Mayes, L.C. (2014). Prenatal cocaine exposure differentially affects stress responses in girls and boys: Associations with future substance use. Development and Psychopathology, 18, 1-8. doi:10.1017/S0954579414000716

Coleman, L.G., Liu, W., Oguz, I., Styner, M. y Crews, F.T. (2014). Adolescent binge ethanol treatment alters adult brain regional volumes, cortical extracellular matrix protein and behavioral flexibility. Pharmacology, Biochemistry and Behavior, 116, 142-151. doi: 10.1016/j.pbb.2013.11.021.

Crews, F.T. y Boettiger, Ch.A. (2009). Impulsivity, frontal lobes and risk for addiction. Pharmacology Biochemical Behavior, 93, 237-247. doi:10.1016/j.pbb.2009.04.018

Cunha-Oliveira, T., Rego, A. C. y Oliveira, C. R. (2014). Cocaine as a Neurotoxin. Handbook of Neurotoxicity, 277-297. doi:10.1007/978-1-4614-5836-4_81

Davidson, C., Lazarus, C., Lee, T.H. y Ellinwood, E.H. (2004). Ondansetron, given during the acute cocaine withdrawal, attenuates oral cocaine self-administration. European Journal of Pharmacology, 503, 99-102.

DePoy, L. M., & Gourley, S. L. (2015). Synaptic cytoskeletal plasticity in the prefrontal cortex following psychostimulant exposure. Traffic, 16(9), 919-940. doi: 10.1111/tra.12295

Dow-Edwards, D., Iijima, M., Stephenson, S., Jackson, A. y Weedon, J. (2014). The effects of prenatal cocaine, post-weaning housing and sex on conditioned place preference in adolescent rats. Psychopharmacology, 231, 1543-55. doi: 10.1007/s00213-013-3418-9.

Estelles, J., Rodriguez-Arias, M., Maldonado, C., Manizanedo, C., Aguilar, M. A. y Minarro, J. (2006). Prenatal cocaine alters later responses to morphine in adult male mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 30, 1073-82. doi:10.1016/j.pnpbp.2006.04.014

Estelles, J., Rodríguez-Arias, M., Maldonado, C., Aguilar, M.A. y Miñarro, J. (2006b). Gestational exposure to cocaine alters cocaine reward. Behavioural Pharmacology, 17, 509-15. doi:10.1097/00008877-200609000-00017

Eyler, F.D., Warner, T.D., Behnke, M., Hou, W., Wobie, K. y Garvan, C.W. (2009). Executive functioning at ages 5 and 7 years in children with prenatal cocaine exposure. Devopmental Neuroscience, 31, 121-136. doi:10.1159/000207500.

Gancarz, A.M.(2011).Sensory reinforcement as an animal model of sensation seeking: Strength of association to cocaine self-administration. (Dissertation), submitted to the Faculty of the Graduate School of the University at Buffalo. Recuperado de http://gradworks.umi.com/3460752.pdf.

Glantz, MD. y Chambers, JC.(2006). Prenatal drug exposure effects on subsequent vulnerability to drug abuse. Development and Psychopathology, 18, 893-922.

Glatt, S.J., Bolanos, C.A. Trksak, G.H., Crowder-Dupont, C. y Jackson, D. (2000). Prenatal cocaine exposure alters behavioral and neurochemical sensitization to amphetamine in adult rats. Neuropharmacology, 39, 599-610. doi: 10.1016/S0028-3908(99)00181-1

Goodwin, G.A., Moody, C. A. y Spear, L.P. (1993). Prenatal cocaine exposure increases the behavioral sensitivity of neonatal rat pups to ligands active at opiate receptors. Neurotoxicology and Teratology, 15, 425-431. doi:10.1016/0892-0362(93)90060-2

Grathwohl, C., Dadmarz, M. y Vogel, W.H. (2001). Oral self-administration of ethanol and cocaine in rats. Pharmacology, 63, 160-5. doi:http://dx.doi.org/10.1159/000056128.

Grewen, K., Burchinal, M., Vachet, C., Gouttard, S., Gilmore, J.H., Lin, W., Johns, J., Elam, M. y Gerig, G.(2014). Prenatal cocaine effects on brain structure in early infancy. NeuroImage, 101, 114-123. doi: 10.1016/j.neuroimage.2014.06.070.

Haagen, K. (2014). Frontiers in the bioarchaeology of stress and disease: Cross-disciplinary perspectives from pathophysiology, human biology and epidemiology. American Journal of Physical Anthropology, 155, 294-308. doi:10.1002/ajpa.22574

Henry, J., Sloane, M. y Black-Pond, C. (2007). Neurobiology and Neurodevelopmental Impact of Childhood Traumatic Stress and Prenatal Alcohol Exposure. Language, Speech & Hearing Services in Schools, 38, 99-109. doi:10.1044/0161-1461(2007/010)

Heyser, C.J., Goodwin, G.A., Moody, C.A. y Spear, L.P. (1993).Prenatal cocaine exposure attenuates cocaine-induced odor preference in infant rats. Pharmacology Biochemistry and Behavior, 42, 169-173. doi:10.1016/0091-3057(92)90461-n

Heyser, C.J., Rajachandran, L., Spear, N.E. y Spear, L.P. (1994). Responsiveness to cocaine challenge in adult rats following prenatal exposure to cocaine. Psychopharmacology Berlin Journal, 116, 45-55. doi:10.1007/BF02244870

Hu, M., Crombag, H. S., Robinson, T. E., & Becker, J. B. (2004). Biological basis of sex differences in the propensity to self-administer cocaine. Neuropsychopharmacology, 29, 81-85. doi:10.1038/sj.npp.1300301

Hutchings, D. E., Fico, T.A. y Dow-Edwards, D.L. (1989). Prenatal cocaine: materna toxicity, fetal effects and locomotor activity in rat offspring. Neurotoxicology and Teratology, 11, 65-69. doi:10.1016/0892-0362(89)90087-1

Keegan, J., Parva, M., Finnegan, M., Gerson, A. y Belden, M. (2010). Addiction in Pregnancy. Journal of Addictive Diseases, 29, 175-191. doi: 10.1080/10550881003684723.

Kippin, T. E., Campbell, J. C., Ploense, K., Knight, C. P. y Bagley, J. (2015). Prenatal Stress and Adult Drug-Seeking Behavior: Interactions with Genes and Relation to Nondrug-Related Behavior. In Perinatal Programming of Neurodevelopment (pp. 75-100). New York: Springer. doi:10.1007/978-1-4939-1372-5_5

Kolb, B. y Gibb, R. (2015). Plasticity in the Prefrontal Cortex of Adult Rats. Frontiers in Cellular Neuroscience, 9, 15. doi:10.3389/fncel.2015.00015

Kunko, P. M., Wallace, M.J. y Robinson, S.E. (1996). Gestational cocaine and ethanol exposure alter spontaneous and cocaine-induced behavior in weanling rats. Pharmacology Biochemistry and Behavior, 55, 559-564. doi:10.1016/s0091-3057(96)00283-3.

Lambert, B.L. y Bauer, C.R. (2012). Developmental and behavioral consequences of prenatal cocaine exposure: a review. Journal of Perinatology, 32, 819–828. doi:10.1038/jp.2012.90.

Laviola, G., Fiore, M., Loggi, G. y Alleva, E. (1994). Prenatal cocaine potentiates the effects of morphine in adult mice. Neuropharmacology, 33, 825-831. doi:10.1016/0028-3908(94)90122-8

Lester, B. M., Lin, H., Degarmo, D.S., Fisher, P. A., Lagasse, L.L., Levine, T.P., Shankaran, S., Bada, H.S., Bauer, C. R., Hammond, J. A., Whitaker, T. M. y Higgins, R. D. (2012). Neurobehavioral disinhibition predicts initiation of substance use in children with prenatal cocaine exposure. Drug Alcohol Dependence, 126, 80-86. doi: 10.1016/j.drugalcdep.2012.04.014.

Lester, B.M. y Padbury, J. F. (2009). Third pathophysiology of prenatal cocaine exposure. Developmental Neuroscience, 31, 23-35. doi:10.1159/000207491.

Loredo-Abdala, A. Casas-Muñoz, A., Monroy-Llaguno, D.A. (2014). La cocaína: sus efectos en la mujer embarazada y en el producto de la gestación. Revista de la Facultad de Medicina de la UNAM, 57, 5-8.

Lucantonio, F., Stalnaker, T. A., Shaham, Y., Niv, Y. y Schoenbaum, G. (2012). The impact of orbitofrontal dysfunction on cocaine addiction. Nature Neuroscience, 15, 358-66. doi:10.1038/nn.3014.

Lynch, W. J., Arizzi, M. N. y Carroll, M. E. (2000). Effects of sex and the estrous cycle on regulation of intravenously self-administered cocaine in rats. Psychopharmacology, 152, 132-139. doi: 10.1007/s002130000488

Lynch, W. J., Roth, M. E., Mickelberg, J. L. y Carroll, M. E. (2001). Role of estrogen in the acquisition of intravenously self-administered cocaine in female rats. Pharmacology Biochemistry and Behavior, 68, 641-646. doi:10.1016/S0091-3057(01)00455-5

Magri, R., Míguez, H., Parodi, V., Hutson, J., S., Menéndez, A., Koren, G. y Bustos, R. (2007). Consumo de alcohol y otras drogas en embarazadas. Archives Pediatrics, 78, 122-132.

Malanga, C.J. y Kosofsky, B. E. (2003). Does drug abuse beget drug abuse? Behavioral analysis of addiction liability in animal models of prenatal drug exposure. Developmental Brain Research, 147, 47-57. doi:10.1016/j.devbrainres.2003.09.019.

Malanga, C.J., Pejchal, M. y Kosofsky, B.E. (2007). Prenatal exposure to cocaine alters the development of conditioned place-preference to cocaine in adult mice. Pharmacology Biochemistry and Behavior, 87, 462-471. doi:10.1016/j.pbb.2007.06.002

Malanga, C.J., Riday, T.T., Carlezon, W.A. y Kosofsky, B. (2008). Exposure to cocaine increases the rewarding potency of cocaine and selective dopaminergic agonists in adult mice. Biological Psychiatry, 63, 214-221. doi:10.1016/j.biopsych.2007.01.014PMCID: PMC2173697.

Malanga, C. J., Ren, J. Q., Guerriero, R. M. y Kosofsky, B. E. (2009). Augmentation of cocaine-sensitized dopamine release in the nucleus accumbens of adult mice following prenatal cocaine exposure. Developmental neuroscience, 31(1-2), 76-89.

Miller, D.B. y Seidler, F.J. (1994). Prenatal cocaine eliminates the sex-dependent differences in activation observed in adult rats after cocaine challenge. Brain Research Bulletin, 33, 179-182. doi:10.1016/0361-9230(94)90248-8

Minnes, S., Singer, L., Meeyoung, O.M., Miaoping, W., Lang,A. y Yoon, S. (2014). Effects of prenatal cocaine/polydrug exposure on substance use by age 15. Drug and Alcohol Dependence, 134, 201-210. doi:10.1016/j.drugalcdep.2013.09.031

Moisiadis, V.G. y Matthews, S.G. (2014). Glucocorticoids and fetal programming part 2: mechanisms. Nature Reviews Endocrinology, 10, 403-411. doi:10.1038/nrendo.2014.74

Morrow, C. E., Accornero, V. H., Xue, L., Manjunath, S., Culbertson, J. L., Anthony, J. C. y Bandstra, E. S. (2009). Estimated risk of developing selected DSM-IV disorders among 5-year-old children with prenatal cocaine exposure. Journal of Child and Family Studies, 18(3), 356-364. doi:10.1007/s10826-008-9238-6.

Mustaka,A. y Kamenetzy,G.(2006). Alcoholismo y ansiedad: modelos animales. International Journal of Psychology and Psychological Therapy, 6, 343-364.

National Institute on Drug Abuse NIDA. (2009).NIDA info Facts: Crack and cocaine. National Institute of Drug Abuse. Washington D.C. June 2009. Recuperado de www.nida.nih.gov/infofacts/.

National Institute of Drug Abuse NIDA. (2012). Drugfacts: high school and youth trends. Recuperado de: Recuperado de www.nida.nih.gov/infofacts/.

Peña-Oliver, Y. (2007). El enriquecimiento ambiental en ratas: efectos diferenciales en función del sexo. (Tesis doctoral. Universidad de Barcelona. Departamento de Biología Celular. España). Recuperada de http://ddd.uab.cat/pub/tesis/2007/tdx-1031107-64745/ypo1de1.pdf

Peris, J., Coleman-Hardee, M. y Millard, W.J. (1992). Cocaine in utero enhances the behavioral response to cocaine in adult rats. Pharmacology Biochemistry and Behavior, 42, 509-515. doi:10.1016/0091-3057(92)90146-7.

Ren, J., Malanga, C. J., Tabit, E. y Kosofsky, B.E. (2004). Neuropathological consequences of prenatal cocaine exposure in the mouse. International Journal of Developmental Neuroscience: The Official Journal of the International Society for Developmental Neuroscience, 22, 309-320. doi:10.1016/j.ijdevneu.2004.05.003

Riley, E.P. y Foss, J.A. (1991). Exploratory behavior and locomotor activity: a failure to find effects in animals prenatally exposed to cocaine. Neurotoxicology and Teratology, 13, 553–558. doi:10.1016/0892-0362(91)90065-5.

Rocha, B.A. (2005). Acquisition of cocaine and heroin self-administration in rats developmentally exposed to lead (Doctoral dissertation, Texas A&M University).

Rocha, B.A., Mead, N. y Kosofsky, E. (2002). Increased vulnerability to self-administer cocaine in mice prenatally exposed to cocaine. Psychopharmacology, 163, 221-229. doi:10.1007/s00213-002-1140-0.

Ross, E.J., Graham, D.L., Money, K.M. y Stanwood, G.D. (2015). Developmental consequences of fetal exposure to drugs: what we know and what we still must learn. Neuropsychopharmacology, 40, 61-87. doi:10.1038/npp.2014.147

Salas-Ramírez, K.Y., Frankfurt, M., Alexander, A., Luine, V.N. y Friedman, E. (2010). Prenatal cocaine exposure increases anxiety, impairs Cognitive function and increases dendritic spine density in adult rats: influence of sex. Neuroscience, 169, 1287-1295. doi:10.1016/j.neuroscience.2010.04.067

SAMHSA. Substance Abuse and Mental Health Services Administration. (2013). Results from the (2012) National Survey on Drug Use and Health: Summary of National Findings, NSDUH Series H-46, HHS Publication No.(SMA) 13-4795. Rockville, MD: Substance Abuse and Mental Health Services Administration. Recuperado de http://store.samhsa.gov/home.

SAMHSA. Substance Abuse and Mental Health Services Administration (2011). Results from the 2010 National Survey on Drug Use and Health: Summary of National Findings. NSDUH Series H-41, HHS Publication No. (SMA) 11–4658. Rockville, MD: Substance Abuse and Mental Health Services Administration; Recuperado de http://www.samhsa.gov/data/NSDUH/2k10NSDUH/2k10Results.htm.

Singer, L.T., Minnes, S., Short, E., Arendt, R., Farkas, K., Lewis, B., Klein, N., Russ, S. y Min, M. (2004). Cognitive Outcomes of Preschool Children with Prenatal Cocaine Exposure. The JAMA Network, 291, 2448-2456. doi:10.1001/jama.291.20.2448

Sinha, R. (2008). Chronic stress, drug use and vulnerability to addiction. Annals of the New York Academy of Sciences, 1141, 105-130. doi:10.1196/annals.1441.030.

Spanagel, R. (2003). Alcohol addiction research: from animal models to clinics. Best Practice & Research Clinical Gastroenterology, 17, 507-518. doi:http://dx.doi.org/10.1016/S1521-6918 (03)00031-3

Stromberg, M.F., Sengpiel, T., Mackler, S.A., Volpicelli, J.R., O'Brien, C.P. y Vogel, W.H. (2002). Effect of naltrexone on oral consumption of concurrently available ethanol and cocaine in the rat. Alcohol, 28,169-179. doi:http://dx.doi.org/10.1016/S0741-8329 (02)00280-X

Tammimäki, A., Forsberg, M.M., Karayiorgou, M., Gogos, J.A. y Männistö, P.T. (2008). Choice oral ethanol self-administration in catechol- o-methyltransferase gene-disrupted male mice. Basic & Clinical Pharmacology & Toxicology, 103, 297-304. doi: 10.1111/j.1742-7843.2008.00267.x.

Tilakaratne, N., Cai, G. y Friedman, E. (2001). Attenuation of cocaine-induced genomic and functional responses in prenatal cocaine-exposed rabbits. Pharmacology Biochemistry and Behavior, 69, 225-232. doi:10.1016/S0091-3057(01)00534-2

UNODC, United Nations Office on Drugs and Crime. (2014). World Drug Report. (United Nations publication, Sales No. E.14.XI.7). Recuperado de: ttp://www.unodc.org/documents/wdr2014/World_Drug_Report_2014_web.pdf. Mayo 8 de 2014

UNODC, United Nations Office on Drugs and Crime. (2015). World Drug Report. (United Nations publication, Sales No. E.14.XI.7). Recuperado de: ttp://www.unodc.org/documents/wdr2014/World_Drug_Report_2015_web.pdf.

Vorhees, C.V., Reed, T.M., Acuff-Smith, K.D., Schilling, M.A.,Cappon, G.D., Fisher, J.E. y Pu, C. (1995). Long-term learning deficits and changes in unlearned behaviors following in utero exposure to multiple daily doses of cocaine during different exposure periods and materna plasma cocaine concentrations. Neurotoxicology and Teratology, 17, 253-264. doi:10.1016/0892-0362(94)00061-H

Zvolensky, M. y Schmidt, N. B. (2004). Anxiety and substance use disorders: introduction to the special series. Journal of Anxiety Disorders, 18, 1-6. http://dx.doi.org/10.1016/j.janxdis.2003.07.002


Texto completo: PDF

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

 

Revista CES Psicología/ISSN 2011-3080 Facultad de Psicología Universidad CES

Publicada desde 2008

Ultima actualización Octubre de 2017

 

Copyright © 2011 Universidad CES, Calle 10A No. 22 - 04, Medellín, Colombia

 

http://www.ces.edu.co/