Accuracy of Linear Measurements of Dental Models Scanned Through 3D Scanner and Cone- Beam Computed Tomography in Comparison with Plaster Models

Léuri Antunes da Silva-Dantas, Amanda Lury Yamashita, Eder Alberto Sigua-Rodriguez, Mariliani Chicarelli, Lilian Cristina Vessoni-Iwaki, Liogi Iwaki Filho

Resumen


Introduction and objective: Virtual surgical planning uses clinical data, image testing, plaster models of dental arches and clinical photos to simulate an orthognathic. There are two ways to perform the scanning of plaster models: scanning for cone-beam computed tomography (CBCT) or 3D scanner. The purpose of this study was to assess the accuracy and the degree of magnification of plaster model images obtained through 3D scanner and CBCT. Materials and methods: The control group was the measurement performed on 40 plaster models by Mitutoyo caliper. The same 40 models were scanned through 3D scanner and CBCT in order to compare the degree of distortion. The
models were tested on the Dolphin software. Six measurements were performed in upper and lower arches: intermolar distance; intercanine distance; segment A; segment B; mesiodistal and cervico-incisal distance of the right-side central incisor. Results: There was no statistically significant difference for upper and lower models. However, CBCT had the degree of distortion of 2.34%, while the 3D scanner presented the degree of distortion of 2.37% comparing the degree of distortion of both methods with the digital caliper. Conclusions: It can be concluded that only the distances of segments A and B of the upper model were not compatible in both scanning methods with the measurements of digital caliper. However, considering all of the measurements, 3D scanner and CBCT are trustworthy to perform linear measurements on digital models and are sufficiently adequate for initial diagnosis and and are clinically acceptable in clinical dental practices.

 

Exactitud de las mediciones lineales de modelos dentales digitalizados a través de escáner 3D y tomografía computarizada de haz cónico en comparación con modelos de yeso

Introducción y objetivo: La planificación quirúrgica virtual para la simulación
de cirugías ortognatica utiliza datos clínicos, pruebas de imagen, modelos de
yeso y fotos clínicas. Hay dos formas de realizar el escaneo de los modelos
de yeso: escaneo con la tomografía computarizada de haz cónico (CBHC) o
escáner 3D. El propósito de este estudio fue evaluar la precisión y el grado de
alteración de las imágenes del modelo de yeso obtenidas a través del escáner
3D y la CBHC. Materiales y métodos: El grupo control fue la medida realizada
en 40 modelos de yeso con el calibrador Mitutoyo. Los mismos 40 modelos fueron
escaneados a través de un escáner 3D y CBHC para comparar el grado de
distorsión. Los modelos fueron evaluados en el software Dolphin. Se realizaron
seis medidas en los arcos superior e inferior: distancia intermolar; distancia
intercanina; segmento A; segmento B; Distancia mesiodistal y cervico-incisal
del incisivo central del lado derecho. Resultados: No hubo diferencia estadísticamente
significativa para los modelos superiores e inferiores. Sin embargo,
la CBHC tuvo un grado de distorsión de 2.34%, mientras que el escáner 3D
presentó un grado de distorsión de 2.37% comparando el grado de distorsión
de ambos métodos con el calibrador digital. Conclusión: Solo las distancias
de los segmentos A y B del modelo superior no fueron compatibles en ambos
métodos de escaneo con las medidas del calibrador digital. Sin embargo,
considerando todas las mediciones, el escáner 3D y la CBCT son confiables
para realizar medidas lineales en modelos digitales, son suficientemente
adecuados para el diagnóstico inicial y son clínicamente aceptables en las
prácticas clínica odontológica.
Palabras clave: tomografía computarizada de haz cónico, cirugía ortognática,
arco dental.

 

Precisão de medições lineares de modelos dentários digitalizados através de scanner 3D e tomografia computadorizada Cone-Beam em comparação com modelos de gesso

Introdução and Objetivo: O planejamento cirúrgico virtual para a simulação da
cirurgia ortognática usa dados clínicos, exames de imagem, modelos de gesso
e fotos clínicas. Existem duas maneiras de digitalizar modelos de gesso: digitalização
com tomografia computadorizada de feixe cônico (CBFC) ou scanner
3D. O objetivo deste estudo foi avaliar a acurácia e o grau de alteração das
imagens do modelo de gesso obtidas através do scanner 3D e do CBFC. Materiais
e métodos: O grupo controle foi a medida feita em 40 modelos de gesso com o
calibrador Mitutoyo. Os mesmos 40 modelos foram digitalizados através de
um scanner 3D e CBHC para comparar o grau de distorção. Os modelos foram
avaliados no software Dolphin. Seis medições foram realizadas nos arcos superior
e inferior: distância intermolar; distância intercanina; segmento A; segmento
B; Distância mesiodistal e cérvico-incisal do incisivo central do lado
direito. Resultados: Não houve diferença estatisticamente significante para os 

modelos superior e inferior. No entanto, CBFC tinha um grau de distorção de
2,34%, enquanto o scanner 3D introduziu um grau de distorção de 2,37% na
comparação entre o grau de distorção de ambos os métodos com calibrador
digital. Conclusões: As distâncias dos segmentos A e B do modelo superior
não eram compatíveis em ambos os métodos de verificação com medições
de calibre digitais. No entanto, considerando-se todas as medições, scanner
3D CBFC e são confiáveis para medições lineares em modelos digitais são
adequados o suficiente para o diagnóstico inicial e são clinicamente aceitáveis
nas práticas de consultório odontológico.
Palavras-chave: tomografia computadorizada de feixe cônico, cirurgia ortognática,
arco dentário.


Palabras clave


Cone-beam computed tomography, orthognathic surgery, dental arch.

Texto completo:

PDF

Referencias


Stokbro K, Aagaard E, Torkov P, Bell RB, Thygesen T. Virtual planning in orthognathic

surgery. Int J Oral Maxillofac Surg 2014;43(8):957-965.

Xia JJ, Shevchenko L, Gateno J, Teichgraeber JF, Taylor TD, Lasky RE, et al. Outcome

study of computer-aided surgical simulation in the treatment of patients

with craniomaxillofacial deformities. J Oral Maxillofac Surg 2011; 69(7):2014-2024.

Baumgaertel S, Palomo JM, Palomo L, Hans MG. Reliability and accuracy of

cone-beam computed tomography dental measurements. Am J Orthod Dentofacial

Orthop 2009;136(1):19-25.

De Vos W, Casselman J, Swennen GR. Cone-beam computerized tomography

(CBCT) imaging of the oral and maxillofacial region: a systematic review of the

literature. Int J Oral Maxillofac Surg 2009;38(6):609-625.

Chen LH, Chen WH. Three-dimensional computer-assisted simulation combining

facial skeleton with facial morphology for orthognathic surgery. Int J Adult Orthodon

Orthognath Surg 1999;14(2):140-145.

Motohashi N, Kuroda T. A 3D computer-aided design system applied to diagnosis

and treatment planning in orthodontics and orthognathic surgery. Eur J Orthod.

;21(3):263-274.

Xia J, Ip HH, Samman N, Wang D, Kot CS, Yeung RW, et al. Computer-assisted

three-dimensional surgical planning and simulation: 3D virtual osteotomy.Int J

Oral Maxillofac Surg 2000;29(1):11-17.

Terajima M, Nakasima A, Aoki Y, Goto TK, Tokumori K, Mori N, et al. A 3-dimensional

method for analyzing the morphology of patients with maxillofacial deformities.

Am J Orthod Dentofacial Orthop 2009;136(6):857-867.

Gateno J, Xia J, Teichgraeber JF, Rosen A. A new technique for the creation of a

computerized composite skull model. J Oral Maxillofac Surg 2003;61(2):222-227.

Uechi J, Okayama M, Shibata T, Muguruma T, Hayashi K, Endo K, et al. A novel method

for the 3-dimensional simulation of orthognathic surgery by using a multimodal

image-fusion technique. Am J Orthod Dentofacial Orthop 2006;130(6):786-

Kim BC, Lee CE, Park W, Kang SH, Zhengguo P, Yi CK, et al. Integration accuracy of

digital dental models and 3-dimensional computerized tomography images by

sequential point- and surface-based markerless registration. Oral Surg Oral Med

Oral Pathol Oral Radiol Endod 2010;110(3):370-378.

Noh H, Nabha W, Cho JH, Hwang HS. Registration accuracy in the integration of

laser-scanned dental images into maxillofacial cone-beam computed tomography

images. Am J Orthod Dentofacial Orthop 2011;140(4):585-591.

Fleming PS, Marinho V, Johal A. Orthodontic measurements on digital study

models compared with plaster models: a systematic review. Orthod Craniofac

Res 2011;14(1):1-16.

Jacobs S, Grunert R, Mohr FW, Falk V. 3D-Imaging of cardiac structures using 3D

heart models for planning in heart surgery: a preliminary study. Interact Cardiovasc

Thorac Surg 2008;7(1):6-9.

Quimby ML, Vig KW, Rashid RG, Firestone AR. The accuracy and reliability of measurements

made on computer-based digital models. Angle Orthod 2004;74(3):298-

Veenema AC1, Katsaros C, Boxum SC, Bronkhorst EM, Kuijpers-Jagtman AM. Index

of Complexity, Outcome and Need scored on plaster and digital models. Eur J

Orthod 2009;31(3):281-286.

Keating AP, Knox J, Bibb R, Zhurov AI. A comparison of plaster, digital and reconstructed

study model accuracy. J Orthod 2008;35(3):191-201; discussion

Bootvong K, Liu Z, McGrath C, Hägg U, Wong RW, Bendeus M, et al. Virtual model

analysis as an alternative approach to plaster model analysis: reliability and validity.

Eur J Orthod 2010;32(5):589-595.

de Waard O, Rangel FA, Fudalej PS, Bronkhorst EM, Kuijpers-Jagtman AM, Breuning

KH. Reproducibility and accuracy of linear measurements on dental models

derived from cone-beam computed tomography compared with digital dental

casts. Am J Orthod Dentofacial Orthop 2014;146(3):328-336.

Lee SM, Hou Y, Cho JH, Hwang HS. Dimensional accuracy of digital dental models

from cone-beam computed tomography scans of alginate impressions

according to time elapsed after the impressions. Am J Orthod Dentofacial Orthop

;149(2):287-294.

Vandenbroucke JP, Tijssen JGP. Klinische Epidemiologie en biostatistiek. Codex

Med., pp. 1297–1316.

Camardella LT, Breuning H, Vilella OV. Are there differences between comparison

methods used to evaluate the accuracy and reliability of digital models? Dental

Press J Orthod 2017;22(1):65-74.

Grünheid T, Patel N, De Felippe NL, Wey A, Gaillard PR, Larson BE. Accuracy, reproducibility,

and time efficiency of dental measurements using different technologies.

Am J Orthod Dentofacial Orthop 2014;145(2):157-164.

Hajeer MY, Millett DT, Ayoub AF, Siebert JP. Applications of 3D imaging in orthodontics:

part II. J Orthod 2004;31(2):154-162.




Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

 

 

CES Odontología/ ISSN 0120-971X Electrónico 2215-9185

Facultad de Odontología, Universidad CES.

Calle 10A No. 22 - 04, Medellín, Colombia

Publicada desde 1987.

revistaodontologia@ces.edu.co

 

http://www.ces.edu.co/