Diferencia en la dureza de resinas utilizadas convencionalmente al polimerizarse con diferentes tipos de luz

Autores/as

  • Rafael Mauricio Naranjo Pizano Universidad CES
  • José Fernando Lince Jaramillo Universidad CES
  • Juliana Vivas-Idarraga Universidad CES
  • Daniel Ruiz-Ceballos Universidad CES
  • Patricia Ortiz-Pérez Universidad CES

DOI:

https://doi.org/10.21615/cesodon.30.1.1

Palabras clave:

Filtek® Supreme XT, Z350, Tetric® N Ceram, Esthet® X, fotocurado, Vickers

Resumen

Introducción y objetivo: Al utilizar resinas directas es importante conocerlas características específicas de las mismas y las lámparas de fotocurado empleadas. Obtener evidencia científica para la selección de la resina, el tipo de lámpara y la técnica operatoria más adecuada para lograr un resultado clínico predecible. Materiales y métodos: Se evaluaron 24 grupos (10 por grupo), fotopolimerizadas con 3 tipos de lámparas: (Optilux®501 - halógena a máxima potencia), (Optilux® 501 - halógena con rampa) y (Bluephase® - LED); y 4 tipos de resinas: Filtek® Supreme XT, Filtek® Z350, Tetric®N Ceram, y Esthet® X; empleando 2 técnicas de obturación: incremental y en bloque. Se evaluó la dureza a la penetración en Vickersen la parte superficial y profunda de cada muestra. Resultados: Filtek® Supreme XT presentó mayor dureza, seguida por Filtek® Z350, Esthet® Xy Tetric® N Ceram. La dureza fue dependiente de la lámpara, siendo mayores los valores con Optilux® 501 con Rampa, seguida por Optilux® 501 amáxima potencia y finalmente LED Bluephase®. Se obtuvo mayor durezacon la técnica incremental en comparación con la técnica en bloque y en la zona superficial comparada con la zona profunda. Conclusion: se obtuvo mayor dureza con la resina Filtek® Supreme XT, fotocurada con la lámpara Optilux® 501 en rampa empleando la técnica de obturación incremental.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

Guzmán H. Resinas compuestas. Biomater Odontológicos uso clínico. 2006;Cuarta ed(Bogotá: Ecoe):175–208. http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1698-69462006000200023

Feilzer AJ, De Gee AJ, Davidson CL. Setting stress in composite resin in relation to configuration of the restoration. J Dent Res. 1987;66(11):1636–1639. https://www.ncbi.nlm.nih.gov/pubmed/10872397

Ilie N, Hickel R. Can CQ be completely replaced by alternative initiators in dental adhesives? Dent Mater J. 2008;27(2):221–228. https://www.ncbi.nlm.nih.gov/pubmed/18540396

Phillips. Ciencia de los materiales dentales. Anusavice Elsevier. 2004. p. 34. https://books.google.com.co/books/about/Phillips_ciencia_de_los_materiales_denta.html?id=4UnIFbmAUqEC&redir_esc=y

Tiba A, Zeller GG, Estrich CG, Hong A. A laboratory evaluation of bulk-fill versus traditional multi-increment-fill resin-based composites. J Am Dent Assoc. 2013;144(10):1182–1183. https://www.ncbi.nlm.nih.gov/pubmed/25946430

Manhart J, García-Godoy F, Hickel R. Direct posterior restorations: clinical results and new developments. Dent Clin North Am. 2002;46(2):303–339. http://www.dental.theclinics.com/article/S0011-8532(01)00010-6/abstract

de Araújo CS, Schein MT, Zanchi CH, Rodrigues SA, Demarco FF. Composite resin microhardness: the influence of light curing method, composite shade, and depth of cure. J Contemp Dent Pract. 2008;9(4):43–50. https://www.ncbi.nlm.nih.gov/pubmed/18473026

Giachetti L, Scaminaci Russo D, Bambi C, Grandini R. A review of polymerization shrinkage stress: current techniques for posterior direct resin restorations. J Contemp Dent Pract. 2006;7(4):79–88. https://www.ncbi.nlm.nih.gov/pubmed/16957794

Carvalho RM, Pereira JC, Yoshiyama M, Pashley DH. A review of polymerization contraction: the influence of stress development versus stress relief. Oper Dent. 1996;21(1):17–24. https://www.ncbi.nlm.nih.gov/pubmed/8957911

Leprince JG, Palin WM, Hadis MA, Devaux J, Leloup G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent Mater. 2013;29(2):139–156. https://www.ncbi.nlm.nih.gov/pubmed/23199807

Ling L, Xu X, Choi G-Y, Billodeaux D, Guo G, Diwan RM. Novel F-releasing composite with improved mechanical properties. J Dent Res. 2009;88(1):83–88. https://www.ncbi.nlm.nih.gov/pubmed/19131323

Yap AUJ, Saw TY, Cao T, Ng MML. Composite cure and pulp-cell cytotoxicity associated with LED curing lights. Oper Dent. 2004;29(1):92–99. http://europepmc.org/abstract/med/14753339

Ruiz, J. M., Ceballos, L., Fuentes, M. V., Osorio, R., Toledano, M., & García-Godoy F. Propiedades mecánicas de resinas compuestas modificadas o no con poliácidos. Av Odontoestomatol. 2003;9(6):291–297. http://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S0213-12852003000600005

Guzmán H. Unidades de fotocurado. Soc Colomb Oper Dent y Biomater. 2000;Vol 4(Bogotá):227–241.

Laboratorios Farpag Ltda. Salivar. 2009. http://www.farpag.com/index.php?option=com_content&view=article&id=107&Itemid=548

Ilie N, Hickel R. Macro-, micro- and nano-mechanical investigations on silorane and methacrylate-based composites. Dent Mater. 2009;25(6):810–819. https://www.ncbi.nlm.nih.gov/pubmed/19286247

Zupancic R, Legat A, Funduk N. Tensile strength and corrosion resistance of brazed and laser-welded cobalt-chromium alloy joints. J Prosthet Dent. 2006;96(4):273–282. https://www.ncbi.nlm.nih.gov/pubmed/17052472

Watanabe T, Miyazaki M, Moore BK. Influence of polishing instruments on the surface texture of resin composites. Quintessence Int. 2006;37(1):61–67. https://www.ncbi.nlm.nih.gov/pubmed/16429705

Tanoue N, Koishi Y, Matsumura H, Atsuta M. Curing depth of different shades of a photo-activated prosthetic composite material. J Oral Rehabil. 2001;28(7):618–623. https://www.ncbi.nlm.nih.gov/pubmed/11422692

Rode KM, Kawano Y, Turbino ML. Evaluation of curing light distance on resin composite microhardness and polymerization. Oper Dent. 2007;32(6):571–578. https://www.ncbi.nlm.nih.gov/pubmed/18051007

Catelan A, de Araújo LSN, da Silveira BCM, Kawano Y, Ambrosano GMB, Marchi GM, et al. Impact of the distance of light curing on the degree of conversion and microhardness of a composite resin. Acta Odontol Scand. 2015;73(4):298–301. https://www.ncbi.nlm.nih.gov/pubmed/25639534

Catelan A, Mainardi M do CAJ, Soares GP, de Lima AF, Ambrosano GMB, Lima DANL, et al. Effect of light curing protocol on degree of conversion of composites. Acta Odontol Scand. 2014;72(8):898–902. https://www.ncbi.nlm.nih.gov/pubmed/24856190

Jafarzadeh T-S, Erfan M, Behroozibakhsh M, Fatemi M, Masaeli R, Rezaei Y, et al. Evaluation of Polymerization Efficacy in Composite Resins via FT-IR Spectroscopy and Vickers Microhardness Test. J Dent Res Dent Clin Dent Prospects. 2015;9(4):226–232. https://www.ncbi.nlm.nih.gov/pubmed/26889359

Ferracane JL, Aday P, Matsumoto H, Marker VA. Relationship between shade and depth of cure for light-activated dental composite resins. Dent Mater. 1986;2(2):80–84. https://www.ncbi.nlm.nih.gov/pubmed/3458636

Chapter 13; Composites R – Resin-Based Composites. Phillips’ Sci Dent Mater. 2013;275–306. https://pocketdentistry.com/resin-based-composites-2/

Cramer NB, Stansbury JW, Bowman CN. Recent advances and developments in composite dental restorative materials. J Dent Res. 2011;90(4):402–416. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144137/

Min S-H, Ferracane J, Lee I-B. Effect of shrinkage strain, modulus, and instrument compliance on polymerization shrinkage stress of light-cured composites during the initial curing stage. Dent Mater. 2010;26(10):1024–1033. https://www.ncbi.nlm.nih.gov/pubmed/20684977

Masouras K, Silikas N, Watts DC. Correlation of filler content and elastic properties of resin-composites. Dent Mater. 2008;24(7):932–939. https://www.ncbi.nlm.nih.gov/pubmed/18155132

Leprince J, Palin WM, Mullier T, Devaux J, Vreven J, Leloup G. Investigating filler morphology and mechanical properties of new low-shrinkage resin composite types. J Oral Rehabil. 2010;37(5):364–376. https://www.ncbi.nlm.nih.gov/pubmed/

Berger SB, Palialol ARM, Cavalli V, Giannini M. Characterization of water sorption, solubility and filler particles of light-cured composite resins. Braz Dent J. 2009;20(4):314–318. https://www.ncbi.nlm.nih.gov/pubmed/20069255

Sabatini C. Comparative study of surface microhardness of methacrylate-based composite resins polymerized with light-emitting diodes and halogen. Eur J Dent. 2013;7(3):327–335. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053622/

E. M. Grado de conversión de los composites: Qué es, qué importancia tiene y qué factores influyen en él.. 2002;(Accessed diciembre/9, 2008.).

Suh BI, Wang Y. Determining the direction of shrinkage in dental composites by changes in surface contour for different bonding configurations. Am J Dent. 2001;14(2):109–113. https://www.ncbi.nlm.nih.gov/pubmed/11507797

Cadenaro M, Biasotto M, Scuor N, Breschi L, Davidson CL, Di Lenarda R. Assessment of polymerization contraction stress of three composite resins. Dent Mater. 2008;24(5):681–685. http://www.sciencedirect.com/science/article/pii/S0109564107001832

Nakfoor B, Yaman P, Dennison J, Herrero A. Effect of a light-emitting diode on composite polymerization shrinkage and hardness. J Esthet Restor Dent. 2005;17(2):110–116; discussion 117. https://www.ncbi.nlm.nih.gov/pubmed/16036127

Yoon T-H, Lee Y-K, Lim B-S, Kim C-W. Degree of polymerization of resin composites by different light sources. J Oral Rehabil. 2002;29(12):1165–1173. https://www.ncbi.nlm.nih.gov/pubmed/12472853

Mills RW, Jandt KD, Ashworth SH. Dental composite depth of cure with halogen and blue light emitting diode technology. Br Dent J. 1999;186(8):388–931. https://www.ncbi.nlm.nih.gov/pubmed/10365460

Stahl F, Ashworth SH, Jandt KD, Mills RW. Light-emitting diode (LED) polymerisation of dental composites: flexural properties and polymerisation potential. Biomaterials. 2000;21(13):1379–1385. https://www.ncbi.nlm.nih.gov/pubmed/10850932

Uhl A, Mills RW, Vowles RW, Jandt KD. Knoop hardness depth profiles and compressive strength of selected dental composites polymerized with halogen and LED light curing technologies. J Biomed Mater Res. 2002;63(6):729–738. http://onlinelibrary.wiley.com/doi/10.1002/jbm.10390/abstract

Shortall AC, Harrington E. Temperature rise during polymerization of light-activated resin composites. J Oral Rehabil. 1998;25(12):908–913. https://www.ncbi.nlm.nih.gov/pubmed/9888225

Dunn WJ, Taloumis LJ. Polymerization of orthodontic resin cement with light-emitting diode curing units. Am J Orthod Dentofacial Orthop. 2002;122(3):236–241. https://www.ncbi.nlm.nih.gov/pubmed/12226603

St-Georges AJ, Swift EJ, Thompson JY, Heymann HO. Curing light intensity effects on wear resistance of two resin composites. Oper Dent. 27(4):410–417. https://www.ncbi.nlm.nih.gov/pubmed/12120780

Kurachi C, Tuboy AM, Magalhães D V, Bagnato VS. Hardness evaluation of a dental composite polymerized with experimental LED-based devices. Dent Mater. 2001;17(4):309–315. https://www.ncbi.nlm.nih.gov/pubmed/11356207

Leonard DL, Charlton DG, Roberts HW, Cohen ME. Polymerization efficiency of LED curing lights. J Esthet Restor Dent [Internet]. 2002;14(5):286–295. https://www.ncbi.nlm.nih.gov/pubmed/12405584

Vandewalle KS, Roberts HW, Miniotis N. Critical appraisal. Quartz-tungsten-halogen and light-emitting diode curing lights. J Esthet Restor Dent. 2006;18(3):161–167. https://www.ncbi.nlm.nih.gov/labs/articles/16831190/

Halvorson RH, Erickson RL, Davidson CL. Polymerization efficiency of curing lamps: a universal energy conversion relationship predictive of conversion of resin-based composite. Oper Dent. 29(1):105–111. https://www.ncbi.nlm.nih.gov/pubmed/14753341

Sideridou I, Tserki V, Papanastasiou G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials. 2003;24(4):655–665. https://www.ncbi.nlm.nih.gov/pubmed/12437960

da Silva EM, Almeida GS, Poskus LT, Guimarães JGA. Relationship between the degree of conversion, solubility and salivary sorption of a hybrid and a nanofilled resin composite. J Appl Oral Sci. 16(2):161–166. https://www.ncbi.nlm.nih.gov/pubmed/19089210

Fu, SY, Feng, XQ, Lauke B, Mai YW. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B Eng. 2008;39(6):933–961. http://www.sciencedirect.com/science/article/pii/S135983680800005X

Descargas

Publicado

2017-10-10

Cómo citar

1.
Naranjo Pizano RM, Lince Jaramillo JF, Vivas-Idarraga J, Ruiz-Ceballos D, Ortiz-Pérez P. Diferencia en la dureza de resinas utilizadas convencionalmente al polimerizarse con diferentes tipos de luz. CES odontol. [Internet]. 10 de octubre de 2017 [citado 29 de marzo de 2024];30(1):3-16. Disponible en: https://revistas.ces.edu.co/index.php/odontologia/article/view/4390

Número

Sección

Artículo de Investigación Científica y Tecnológica
Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas