En defensa del metano (de las vacas)

Juan Fernando Naranjo Ramírez

Resumen


Nos enfrentamos al mundo donde se rechazan los datos y los expertos, donde todos opinan con o sin argumentos, donde se simplifica lo complejo y donde se difunden falsedades en las redes que el público en general consume sin la menor reflexión y con escasos elementos de análisis. El siguiente texto es un intento de mejorar el entendimiento sobre la contribución de la ganadería bovina en la dinámica del ciclo del carbono y busca exponer por qué es un error responsabilizar a las vacas de contribuir e incrementar el cambio climático global cuándo según muchas evidencias sugieren que pueden actuar es como una esperanzadora estrategia para mitigarlo y reducirlo.

 

In defense of methane (from cows)

We face the world where data and experts are rejected, where everyone thinks with or without arguments, where the complex is simplified and where falsehoods are spread in the networks that the general public consumes without the slightest reflection and with few elements of analysis. The following text is an attempt to improve understanding of the contribution of bovine livestock in the dynamics of the carbon cycle and seeks to explain why it is a mistake to hold cows responsible for contributing and increasing global climate change when, according to many evidences, they suggest that can act is like a hopeful strategy to mitigate and reduce it.


Texto completo:

PDF

Referencias


Allen, M. R. et al. 2018. A solution to the misrepresentations of CO2-equivalent

emissions of short-lived climate pollutants under ambitious mitigation. npj Climate

and Atmospheric Sciencevolume 1, Article number: 16.

Archer et al. 2009. Atmospheric Lifetime of Fossil Fuel Carbon Dioxide. Annu. Rev.

Earth Planet. Sci. 2009. 37:117–34. doi: 10.1146/annurev.earth.031208.100206.

Balcombe, P. et al. 2018. Methane emissions: choosing the right climate metric

and time horizon. Environ. Sci.: Processes Impacts, 20, 1323.

Carrington, D. 2018. Huge reduction in meat-eating ‘essential’ to avoid climate

breakdown. The Guardian. Consultado en: https://www.theguardian.com/environment/

/oct/10/huge-reduction-in-meat-eating-essential-to-avoid-climate-

breakdown

Clark, M. and D, Tilman. 2017. Comparative analysis of environmental impacts

of agricultural production systems, agricultural input efficiency, and food choice

Environ. Res. Lett., 12 (2017), Article 064016.

de Vries et al. 2015. Comparing environmental impacts of beef production systems:

a review of life cycle assessments. Livest. Sci., 178, pp. 279-288.

EPA 2019. Draft Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-

The United States Environmental Protection Agency (EPA). 669 pp. Disponible

en: https://www.epa.gov/ghgemissions/draft-inventory-us-greenhousegas-

emissions-and-sinks-1990-2017

Gerssen-Gondelach et al. 2017. Intensification pathways for beef and dairy cattle

production systems: Impacts on GHG emissions, land occupation and land use

change Agric. Ecosyst. Environ., 240, pp. 135-147.

Harrabin, R. 2018. Climate change: Report says ‘cut lamb and beef’. BBC News.

Consultado en: https://www.bbc.com/news/science-environment-46214864

Harwatt, H. 2018. Including animal to plant protein shifts in climate change

mitigation policy: a proposed three-step strategy, Climate Policy, DOI:

1080/14693062.2018.1528965

Herrero, M. et al. 2011. Livestock and greenhouse gas emissions: The importance of

getting the numbers right, Animal Feed Science and Technology, Volumes 166–

, Pages 779-782.

Karlsson, J. et al. 2018. Replacing human-edible feed ingredients with by-products

increases net food production efficiency in dairy cows, Journal of Dairy

Science, Volume 101, Issue 8, Pages 7146-7155.

Knapp, J.R. et al. 2014. Invited review: Enteric methane in dairy cattle production:

Quantifying the opportunities and impact of reducing emissions, Journal of Dairy

Science, Volume 97, Issue 6, Pages 3231-3261.

Lynch, J. 2019. Availability of disaggregated greenhouse gas emissions from

beef cattle production: A systematic review. Environmental Impact Assessment

Review, Volume 76, Pages 69-78.

Mario Herrero et al. 2016. Greenhouse gas mitigation potentials in the livestock

sector. Nature Climate Change volume 6, pages 452–461

Mottet Anne and Henning Steinfeld. 2018. Cars or livestock: which contribute more to

climate change? Consultado en: http://news.trust.org/item/20180918083629-d2wf0/

Myhre, G., et al. 2013. Radiative forcing of the direct aerosol effect from AeroCom

Phase II simulations. Atmos. Chem. Phys., 13, 1853-1877, doi:10.5194/acp-13-

-2013.

NASA 2019. Global Climate Change . https://climate.nasa.gov/

Pierrehumbert, R. T. 2014. Short-lived climate pollution. Ann. Rev. Earth Planet.

Sci. 42, 341–379.

Poore, J. y T., Nemececk. 2018. Reducing food’s environmental impacts through

producers and consumers. Science 01 Jun 2018: Vol. 360, Issue 6392, pp. 987-992.

Rojas-Downing, M. et al. 2017. Climate change and livestock: Impacts, adaptation,

and mitigation, Climate Risk Management, Volume 16, Pages 145-163.




Licencia de Creative Commons

Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.