Función y metabolismo de ácidos grasos en el tejido adiposo y hepático de rumiantes en producción: una revisión

Julián Andrés Castillo Vargas

Resumen


El tejido adiposo (TA) y hepático influencian el metabolismo de ácidos grasos (AG), al ser en gran parte los responsables de regular su biosíntesis, degradación y almacenamiento en tejidos corporales, como también de su secreción en leche y carne de animales en producción. De esta forma, un mejor entendimiento de la funcionalidad del metabolismo de AG en estos tejidos y los factores que lo afectan, podría dar las bases para el diseño de estrategias productivas en rumiantes. Así, el objetivo de esta revisión es presentar un panorama general de la funcionalidad y metabolismo de los AG en el TA y hepático en rumiantes de producción. A partir de la revisión, se pudo establecer, que el tipo de lípidos mayoritarios en TA y hepático, lo forman los AG y triglicéridos. El TA es el principal sitio de almacenamientobenergético tanto en rumiantes como en no rumiantes. El TA se encuentra. metabólicamente asociado con el tejido hepático mediante un equilibrio que regula los procesos de β-oxidación, síntesis de novo y transporte de AG a nivel tisular. Finalmente, se pudo establecer que el metabolismo de AG en TA y hepático es afectado por diversos factores, tales como la nutrición, nivel de restricción dietaria, genética, estado fisiológico y medio ambiente, de los cuales, la nutrición tiene el mayor impacto.

 

Metabolism and function of lipids in the adipose and liver tissues of production ruminants: a review

The adipose and liver tissues influence the fatty acid metabolism, being largely responsible for regulating their biosynthesis, degradation and storage in body tissues, as well as for their secretion in milk and meat production from ruminants. Therefore, a better understanding of the functionality of fatty acid metabolism in these tissues and the factors that affect it, could provide the basis for the design of productive strategies in ruminants. Thus, the aim of this review is to present a general overview of the functionality and metabolism of fatty acids in the adipose and liver tissues in production ruminants. From the review, it could be established that fatty acids and triglycerides are the main lipid types in adipose and liver tissues. Adipose tissue is the main energy storage site for both ruminants and non-ruminants. Adipose tissue is metabolically associated with liver tissue through an equilibrium that regulates the processes of β-oxidation, de novo synthesis, and fatty acid transport at a tissue level. Finally, it was established that the fatty acids metabolism in adipose and liver tissue is affected by several factors, including nutrition and level of dietary restriction, genetics, physiological state, and environment, being nutrition the main factor.


Keywords: anabolism, catabolism, dairy cows, enzymes, lipids.

 

Função e metabolismo de ácidos graxos no tecido adiposo e hepático de ruminantes em produção: uma revisão

O tecido adiposo (TA) e hepático influenciam o metabolismo dos ácidos graxos (AG), sendo amplamente responsável pela regulação de biossíntese, degradação e armazenamento destes nos tecidos corporais, bem como sua secreção no leite e na carne de animais em produção. Desta forma, uma melhor compreensão da funcionalidade do metabolismo dos AG nesses tecidos e os fatores que o afetam, poderia fornecer a base para o planejamento de estratégias produtivas em ruminantes. Assim, o objetivo desta revisão é apresentar uma visão geral da funcionalidade e metabolismo dos AG no TA e hepático em ruminantes de produção. A partir da revisão, foi estabelecido que o tipo de lipídios principais no TA e hepático, são os AG e triglicerídeos. O TA é o principal local de armazenamento de energia para ruminantes e não ruminantes. O TA está metabolicamente associado ao tecido hepático através de um equilíbrio que regula os processos de β-oxidação, síntese de novo e transporte de AG ao nível dos tecidos. Finalmente, foi estabelecido que o metabolismo da AG no TA e no hepatócito é afetado por vários fatores, como nutrição, nível de restrição alimentar, genética, estado fisiológico e ambiente, dos quais a nutrição tem o maior impacto.

Palavras-chave: anabolismo, catabolismo, enzimas, lipídios, vacas leiteiras.


Palabras clave


anabolismo; catabolismo; enzimas; lípidos

Texto completo:

PDF

Referencias


Alves SP, Raundrup K, Cabo Â, Bessa RJB, Almeida AM. Fatty Acid Composition of Muscle, Adipose Tissue and Liver from Muskoxen (Ovibos moschatus) Living in West Greenland. PLoS ONE 2015; 10(12): e0145241.

Bahnamiri HZ, Zali A, Ganjkhanlou M, Sadeghi M, Shahrbabak HM. Regulation of lipid metabolism in adipose depots of fat-tailed and thin-tailed lambs during negative and positive energy balances. Gene 2018; 641: 203–211.

Bahnamiri HZ, Ganjkhanlou M, Sadeghi M, Najaf-panah MJ, Zali A, et al. Effects of fish oil supplementation and supplementation period on adipose tissue generation sites and the gene expression of enzymes involved in metabolizing adipose tissue in Holstein bulls under various forage types. Agri Gene 2016; 1: 72–78.

Bauchart D, Gruffat D, Durand D. Lipid absorption and hepatic metabolism in ruminants. Proc Nutr Soc 1996; 55: 39–47.

Bell AW. Lipid metabolism in the liver and selected tissues and in the whole body of ruminant animals. Prog Lipid Res 1981; 18:117–164.

Bionaz M, Chen S, Khan MJ, Loor J J. Functional role of PPARs in ruminants: potential targets for fine-tuning metabolism during growth and lactation. PPAR Res 2013; Article ID 684159.

Bonnet M, Faulconnier Y, Fléchet J, Hocquette J F, Leroux C et al. Messenger RNAs encoding lipoprotein lipase, fatty acid synthase and hormone-sensitive lipase in the adipose tissue of underfed–refed ewes and cows. Reprod Nutr Dev 1998; 38: 297–307.

Caldari-Torres C, McGilliard ML, Corl BA. Esterification of essential and non-essential fatty acids into distinct lipid classes in ruminant and non-ruminant tissues. Comp Biochem Physiol B Biochem Mol Biol 2016; 200: 1-5.

Chilliard Y, Ferlay A, Rouel J, Lamberet G. A review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis. J Dairy Sci 2003; 86:1751-1770.

Chilliard Y. Dietary Fat and Adipose Tissue Metabolism in Ruminants, Pigs, and Rodents: A Review. J Dairy Sci 1993; 76:3897-3931.

Cincović M, Kirovski D, Vujanac I, Belić B, Djoković R. Relationship between the indexes of insulin resistance and metabolic status in dairy cows during early lactation, Acta Vet 2017; 67(1): 57-70.

Costa AS, Bessa RJ, Pires VM, Rolo EA, Pinto RM, et al. Is hepatic lipid metabolism of beef cattle influenced by breed and dietary silage level?. BMC Vet Res 2014; 10(65): 1- 14.

Contreras GA, Strieder-Barboza C, Raphael W. Adipose tissue lipolysis and remodeling during the transition period of dairy cows. J Anim Sci Biotechnol 2017, 8 (41): 1 – 12.

Deng K, Ma T, Wang Z, TanTai W, Nie H, et al. Effects of perilla frutescens seed supplemented to diet on fatty acid composition and lipogenic gene expression in muscle and liver of Hu lambs. Livest Sci 2018; 211: 21–29.

Faulconnier Y, Chilliard Y, Torbati B, Leroux C. The transcriptomic profiles of adipose tissues are modified by feed deprivation in lactating goats. Comp Biochem Physiol Part D Genomics Proteomics 2011; 6(2):139-149.

Faylon MP, Baumgard LH, Rhoads RP, Spurlock DM. Effects of acute heat stress on lipid metabolism of bovine primary adipocytes. J Dairy Sci 2015; 98:8732–8740.

Ferlay A, Bernard L, Meynadier A, Malpuech-Brugère C. Production of trans and conjugated fatty acids in dairy ruminants and their putative effects on human health: A review. Biochimie 2017; 141: 107-120.

Garcia-Rojas P, Antaramian A, González-Davalos L, Villarroya F, Shimada A, et al. Induction of peroxisomal proliferator-activated receptor gamma and peroxisomal proliferator-activated receptor γ coactivator 1 by unsaturated fatty acids, retinoic acid, and carotenoids in preadipocytes obtained from bovine white adipose tissue. J Anim Sci 2010; 88: 1801-1808.

Gross JJ, Schwarz FJ, Eder K, van Dorland HA, Bruckmaier RM. Liver fat content and lipid metabolism in dairy cows during early lactation and during a mid-lactation feed restriction. J Dairy Sci 2013; 96: 5008–5017.

Gruffat D, Durand D, Graulet B, Bauchart D. Regulation of VLDL synthesis and secretion in the liver. Reprodn Nutr Dev 1996; 36: 375-389.

Hosseini A, Behrendt C, Regenhard P, Sauerwein H, Mielenz M. Differential effects of propionate or β-hydroxybutyrate on genes related to energy balance and insulin sensitivity in bovine white adipose tissue explants from a subcutaneous and a visceral depot. J Anim Physiol Anim Nutr 2011; 96: 570-580.

Jenkins TC, Wallace RJ, Moate PJ, Mosley EE. Board-Invited Review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J Anim Sci 2008; 86(2): 397-412.

Kühn C, Bellmann O, Voigt J, Wegner J, Guiard V, et al. An experimental approach for studying the genetic and physiological background of nutrient transformation in cattle with respect to nutrient secretion and accretion type. Archiv fur Tierzucht, Dummerstorf 2001; 45(4): 317-330.

Laguna JG, Cardoso MS, Lima JA, Reis RB, Carvalho AU, Saturnino HM, Teixeira SMR. Expression of hepatic genes related to energy metabolism during the transition period of Holstein and F1 Holstein-Gir cows. J Dairy Sci 2017; 100(12): 9861-9870.

Lashkari S, Jensen SK. Quantitative determination of conjugated linoleic acid and polyunsaturated fatty acids in milk with C17:0 as internal marker – Evaluation of different methylation procedures. Data Brief 2017; 15: 106-110.

Lee SH, Hossner KL. Coordinate regulation of ovine adipose tissue gene expression by propionate. J Anim Sci 2002; 80: 2840-2849.

Li X, Chen H, Guan Y, Li XB, Lei LC, et al. Acetic acid activates the amp-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes. PLoS One 2013; 8: e67880.

Liu Q, Wang C, Guo G, Huo WJ, Zhang YL, et al. Effects of branched-chain volatile fatty acids supplementation on growth performance, ruminal fermentation, nutrient digestibility, hepatic lipid content and gene expression of dairy calves. Anim Feed Sci Technol 2018; 237: 27–34

Mashek DG, Grummer RR. Effects of long chain fatty acids onlipid and glucose metabolism in monolayer cultures of bovine hepato-cytes. J Dairy Sci 2003; 86: 2390–2396.

Mashek DG, Bertics SJ, Grummer RR. Metabolic fate of long-chain unsaturated fatty acids and their effects on palmitic acid metabolism and gluconeogenesis in bovine hepatocytes. J Dairy Sci 2002; 85(9): 2283- 2289.

Nelson DL, Lehninger AL, Cox MM. Lehninger principles of biochemistry. 6th ed. New York: W.H. Freeman; 2013

Nutrient Requirements of Beef Cattle (NRC): 6th Revised Ed. Washington, DC: The National Academies Press; 2016. https://doi.org/10.17226/19014.

Petit HV, Palin MF, Doepel L. Hepatic Lipid Metabolism in Transition Dairy Cows Fed Flaxseed. J Dairy Sci 2007; 90:4780–4792.

Pires JAA, Grummer RR, Mashek DG. Modulation of bovine hepatic ApoB100, ApoE and MTP gene expression by fatty acids. J Dairy Sci 2006; 89 (Suppl. 1): 349

Pires JAA, Grummer RR, Mashek DG. Modulation of bovine hepatic lipid metabolism by fatty acids. J Dairy Sci 2004; 87(Suppl. 1): 336.

Preedaa MG, Parkunan T, Kumar DR, Ramavathi J, Yazhini P, et al. Molecular techniques in rumen biotechnology: A review. Agric Rev 2016; 37(1): 55-60.

Prodanović R, Korićanac G, Vujanac I, Djordjević A, Pantelić M, et al. Obesity-driven prepartal hepatic lipid accumulation in dairy cows is associated with increased CD36 and SREBP-1 expression. Res Vet Sci 2016; 107: 16-19.

Reiser R. Hydrogenation of polyunsatuated fatty acids by the ruminant. J Am Oil Chem Soc 1956; 36(4): 155-156.

Restelli L, Marques AT, Savoini G, Invernizzi G, Carisetti M, et al. Saturated or unsaturated fat supplemented maternal diets influence omental adipose tissue proteome of suckling goat-kids. Res Vet Sci 2017; pii: S0034-5288(17)30469-1.

Robinson DL, Cafe LM, Greenwood PL. Meat science and muscle biology symposium: developmental programming in cattle: consequences for growth, efficiency, carcass, muscle, and beef quality characteristics. J Anim Sci 2013; 91: 1428–1442.

Scollan ND, Dannenberger D, Nuernberg K, Richardson I, MacKintosh S, et al. Enhancing the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci 2014; 97: 384–394.

Schlegel G, Ringseis R, Windisch W, Schwarz F J, Eder K. Effects of a rumen-protected mixture of conjugated linoleic acids on hepatic expression of genes involved in lipid metabolism in dairy cows. J Dairy Sci 2012; 95: 3905-3918.

Schmitt E, Ballou MA, Correa MN, DePeters EJ, Drackley JK, et al. Dietary lipid during the transition period to manipulate subcutaneous adipose tissue peroxisome proliferator-activated receptor-gamma co-regulator and target gene expression. J Dairy Sci 2011; 94: 5913-5925.

Selberg KT, Staples CR, Luchini ND, Badinga L. Dietary trans octadecenoic acids upregulate the liver gene encoding peroxisome proliferator-activated receptor-alpha in transition dairy cows. J Dairy Res 2005; 72: 107-114.

Shingfield KJ, Bonnet M, Scollan ND. Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal 2013; 7(Suppl. 1): 132–162.

Sigl T, Schlamberger G, Kienberger H, Wiedemann S, Meyer HH, et al. Rumen-protected conjugated linoleic acid supplementation to dairy cows in late pregnancy and early lactation: effects on milk composition, milk yield, blood metabolites and gene expression in liver. Acta Vet Scand 2010; 52(16): 1-8.

Souza AP, St-Pierre NR, Fernandes MHRM, Almeida AK, Vargas J A C, et al. Sex effects on net protein and energy requirements for growth of Saanen goats. J Dairy Sci 2017; 100(6):4574-4586.

Stefos GC, Argyrokastritis A, Bizelis I, Rogdakis E. Molecular cloning and characterization of the sheep malic enzyme cDNA. Gene 2008; 423: 72–78.

Sumner JM, McNamara JP. Expression of lipolytic genes in the adipose tissue of pregnant and lactating Holstein dairy cattle. J Dairy Sci 2007; 90(11): 5237-46.

Tajik H, Ramin A, Nozad S, Jelodari B, Ashtab G, et al. Relationship between liver lipid and liver dry matter in slaughtered ruminants. Vet Res Forum 2012; 3(4): 275 – 279.

Thatcher W, Santos JEP, Staples CR. Dietary manipulations to improve embryonic survival in cattle. Theriogenology 2011; 76: 1619–1631.

Urrutia O, Mendizabal J A, Insausti K, Soret B, Purroy A, et al. Effect of linseed dietary supplementation on adipose tissue development, fatty acid composition, and lipogenic gene expression in lambs. Livest Sci 2015; 178: 345-356.

Vernon RG, Faulkner A, Finley E, Pollock H, Taylor E. Enzymes of glucose and fatty acid metabolism of liver, kidney, skeletal muscle, adipose tissue and mammary gland of lactating and non-lactating sheep. J Anim Sci 1987; 64(5): 1395-411.

Waters SM, Coyne GS, Kenny DA, MacHugh DE, Morris DG. Dietary n-3 polyunsaturated fatty acid supplementation alters the expression of genes involved in the control of fertility in the bovine uterine endometrium. Physiol Genomics 2012; 44: 878–888.

Zachut M, Kra G, Livshitz L, Portnick Y, Yakoby S, et al. Seasonal heat stress affects adipose tissue proteome toward enrichment of the Nrf2-mediated oxidative stress response in late-pregnant dairy cows. J Proteomics 2017; 158: 52-61.

Zhang H, Sun LW, Wang ZY, Ma TW, Deng MT, et al. Energy and protein requirements for maintenance of Hu sheep during pregnancy. J Integr Agric 2018; 17(1): 173-183.




Licencia de Creative Commons

Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.