Resistencia antimicrobiana de Streptococcus agalactiae de origen humano y bovino

Ana Soffía Jaramillo-Jaramillo, Claudia Gisela Cobo-Ángel, Yenny Moreno-Tolosa, Alejandro Ceballos-Márquez

Resumen


Streptococcus agalactiae (SAG) es un agente etiológico importante en unamplio espectro de infecciones humanas y bovinas. En humanos, estepatógeno es el principal responsable de septicemias severas y muertesneonatales, debido a la enfermedad conocida como “sepsis neonatal”, la cual ha sido reportada en diferentes países, incluyendo a Colombia. Cerca del 36%de las mujeres embarazadas son colonizadas por esta bacteria y de ellas el 45%de los neonatos adquiere la infección por SAG. En adultos, la colonización de SAGasintomática ocurre frecuentemente en el tracto gastrointestinal y genitourinario.Sin embargo, puede llegar a causar enfermedades tales como meningitis, septicemia,abscesos, infecciones del tracto urinario y artritis especialmente en adultosinmunocomprometidos. Adicionalmente, SAG es considerado un patógeno de altaimportancia en la producción lechera, por ser responsable de cuadros generalmentesubclínicos y crónicos de mastitis en vacas, afectando la sanidad del hato, así comola calidad y cantidad de leche producida. La principal herramienta para el control deSAG es el uso de antimicrobianos tipo betalactámicos o tipo macrólidos en casos depacientes alérgicos a las penicilinas. Sin embargo, se ha reportado aislamientos deSAG resistentes o con susceptibilidad disminuida a los antimicrobianos utilizadospara su control en ambas especies: humanos y bovinos. El hallazgo de resistenciaantimicrobiana en SAG está recibiendo atención entre la comunidad científica entodo el mundo debido a su impacto negativo en la salud pública. El presente trabajoes una revisión de literatura científica, no sistemática, que tiene como objetivoanalizar los mecanismos y la prevalencia de la resistencia antimicrobiana de SAG,así como los genes asociados a esta condición en aislamientos de origen humano ybovino.

 

Antimicrobial resistance of Streptococcus agalactiae ofhuman and bovine origin

Streptococcus agalactiae (SAG) is an important etiologic agent in a widespectrum of human and bovine infections. In humans, this pathogen is themain responsible of severe septicemia and neonatal dead, due to the diseaseknown as “neonatal sepsis”, which has been reported in differentcountries, including Colombia. About 36% of pregnant women are colonizedby this bacterium and of them, the 45% of the newborns acquire theSAG infection. In adults, asymptomatic SAG colonization occurs frequentlyin gastrointestinal and genitourinary tract. However, it can cause diseasessuch as meningitis, septicemia, abscesses, infections in urinary tractand arthritis particularly in immunocompromised adults. Additionally, SAGis considered a highly important pathogen in dairy production for beingresponsible of mastitis cases generally subclinical and chronic in cows,affecting the herd health, as well as the quality and the quantity of milkproduced. The main tool for SAG control is the use of beta-lactams antimicrobialsor macrolides in cases of penicillin-allergic patients. Some of thestudies reported resistant SAG isolates or with decreased susceptibility tothe antimicrobials used for its control in both species: humans and bovines.The finding of antimicrobial resistance in SAG is getting attention fromthe scientific community around the world because its negative impact inpublic health. The present work is a non-systematic review of scientificliterature, with the objective of analyzing the mechanism and prevalenceof SAG antimicrobial resistance, as well as, the genes associated to thiscondition in human and bovine isolates.

Keywords: bacterial antibiotic resistance, bovine, human, resistance genes,Streptococcus agalactiae.

 

Resistência antimicrobiana de Streptococcus agalactiae deorigem humana e bovina

Streptococcus agalactiae (SAG) é um agente etiológico importante em um amplo espectrode infecções humanas e bovinas. Nos seres humanos, esse patógeno é a principalcausa de septicemia grave e mortes neonatais, devido à doença conhecida como“sepse neonatal”, que tem sido relatada em diferentes países, incluindo a Colômbia.Cerca de 36% das mulheres grávidas são colonizadas por esta bactéria e destes 45%dos recém-nascidos adquirem a infecção pelo SAG. Em adultos, a colonização do SAGassintomático ocorre com freqüência nos tratos gastrintestinal e genitourinário. Noentanto, pode levar a doenças como meningite, septicemia, abscessos, infecções dotrato urinário e artrite, especialmente em adultos imunocomprometidos. Além disso,a SAG é considerado um patógeno de grande importância na produção de leite, sendoresponsável mastite geralmente subclínica e crônica em caixas de vacas, afetandoa saúde do rebanho, ea qualidade e quantidade de leite produzida. A principal ferramentapara o controle do SAG é o uso de antimicrobianos beta-lactâmicos ou do tipomacrolídeo em casos de pacientes alérgicos a penicilinas. No entanto, isolados deSAG resistentes ou com reduzida susceptibilidade aos antimicrobianos usados paracontrolá-los foram relatados em ambas as espécies: humanos e bovinos. O achadode resistência antimicrobiana no SAG está recebendo atenção entre a comunidadecientífica em todo o mundo devido ao seu impacto negativo na saúde pública. Estepapel é uma revisão da literatura científica, não sistemática, ou seja para analisar osmecanismos e a prevalência de resistência antimicrobiana SAG, bem como os genesassociados com esta condição em isolados humanos e bovinos.

Palavras-chave: bovinos, genes de resistência, resistência bacteriana a antimicrobianos,Streptococcus agalactiae.

DOI: http://dx.doi.org/10.21615/cesmvz.13.1.5


Palabras clave


bovinos, genes de resistencia, humanos, resistencia antimicrobiana bacteriana, Streptococcus agalactiae

Citas


Akiba T, Koyama K, Ishiki Y. On the mechanism of the development of multiple-drug-resistant clones of Shigella. Japan Medical Association Journal, 1960; 4 (2): 219-227.

Alekshun MN, Levy SB. Molecular Mechanisms of Antibacterial Multidrug Resistance. Cell, 2007; 128 (6): 1037-1050.

Ammor MS, Flórez AB, Van Hoek AHAM, De Los Reyes-Gavilán CG, Aarts HJM, Margolles A, Mayo B. Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria. Journal of Molecular Microbiology and Biotechnology, 2007; 14 (1-3): 6-15.

Andrews JI, Diekema DJ, Hunter SK, Rhomberg PR, Pfaller MA, Jones RN, Doern GV. Group B streptococci causing neonatal bloodstream infection: Antimicrobial susceptibility and serotyping results from Sentry centers in the Western Hemisphere. American Journal of Obstetrics and Gynecology, 2000; 183 (4): 859-862.

Barlow J. Mastitis therapy and antimicrobial susceptibility: A multispecies review with a focus on antibiotic treatment of mastitis in dairy cattle. Journal of Mammary Gland Biology and Neoplasia, 2011; 16 (4): 383-407.

Bergal A, Loucif L, Benouareth DE, Bentorki AA, Abat C, Rolain JM. Molecular epidemiology and distribution of serotypes, genotypes, and antibiotic resistance genes of Streptococcus agalactiae clinical isolates from Guelma, Algeria and Marseille, France. European Journal of Clinical Microbiology and Infectious Diseases, 2015; 34 (12): 2339-2348.

Binghuai L, Chen X, Wang J, Wang D, Zeng J, Li Y, Li D, Zhu F, Cui Y, Huang L. Molecular characteristics and antimicrobial resistance in invasive and noninvasive Group B Streptococcus between 2008 and 2015 in China. Diagnostic Microbiology and Infectious Disease, 2016; 86 (4): 351-357.

Boswihi SS, Udo EE, Al-Sweih N. Serotypes and antibiotic resistance in group B streptococcus isolated from patients at the Maternity Hospital, Kuwait. Journal of Medical Microbiology, 2012; 61 (1): 126-131.

Calderón-Rangel A, Rodríguez-Rodríguez V, Arrieta-Bernate GJ, Máttar-Velilla S. Prevalencia de mastitis bovina en sistemas doble propósito en Montería (Colombia): etiología y susceptibilidad antibacteriana. Revista Colombiana de Ciencias Pecuarias, 2011; 24 (1): 11-18.

Castor ML, Whitney CG, Como-Sabetti K, Facklam RR, Ferrieri P, Bartkus JM, Juni BA, Cieslak PR, Farley MM, Dumas NB, Schrag SJ, Lynfield R. Antibiotic resistance patterns in invasive group B streptococcal isolates. Infectious diseases in obstetrics and gynecology, 2008; 2008: 727505-727505.

CDC. Prevention of Perinatal Group B Streptococcal Disease. Revised Guidelines from CDC, 2010, D.o.h.a.h.s.C.f.D.C.a. Prevention, Editor. 2010: USA.

Clancy J, Dib-Hajj F, Petitpas JW, Yuan W. Cloning and characterization of a novel macrolide efflux gene, mreA, from Streptococcus agalactiae. Antimicrobial agents and chemotherapy, 1997; 41 (12): 2719-2723.

Cobo-Ángel C, Jaramillo-Jaramillo A, Lasso-Rojas L, Zadoks R, Sanchez J, Rodríguez-Lecompte JC, Ceballos-Márquez A. Distribution and Heterogeneity of Streptococcus agalactiae in Colombian Dairy Herds, in 57th NMC Annual Meeting. 2018: Tucson, US.

Cools P, . Melin P. Group B Streptococcus and perinatal mortality. Res Microbiol, 2017; 168 (9-10): 793-801.

Couce A, Blázquez J. Side effects of antibiotics on genetic variability. FEMS Microbiology Reviews, 2009; 33 (3): 531-538.

Chaiwarith R, Jullaket W, Bunchoo M, Nuntachit N, Sirisanthana T, Supparatpinyo K. Streptococcus agalactiae in adults at Chiang Mai University Hospital: a retrospective study. BMC Infect. Dis., 2011; 11: 149.

Chopra I, Roberts M. Tetracycline antibiotics : mode of action, applications, molecular biology and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews, 2001; 65 (2): 232-260.

Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 2010; 74 (3): 417-433.

Denamiel G, Llorente P, Carabella M, Rebuelto M, Gentilini E. Antimicrobial susceptibility of Streptococcus spp. isolated from bovine mastitis in Argentina. Journal of veterinary medicine. B, Infectious diseases and veterinary public health, 2005; 52 (3): 125-128.

Ding Y, Zhao J, He X, Li M, Guan H, Zhang Z, Li P. Antimicrobial resistance and virulence-related genes of Streptococcus obtained from dairy cows with mastitis in Inner Mongolia, China. Pharmaceutical Biology, 2016; 54 (1): 162-167.

Dixon JMS. Group A Streptococcus resistant to erythromycin and lincomycin. Canadian Medical Association Journal, 1968; 99: 1093-1094.

Dogan B, Schukken YH, Santisteban C, Boor KJ. Distribution of serotypes and antimicrobial resistance genes among Streptococcus agalactiae isolates from bovine and human hosts. J. Clin. Microbiol., 2005; 43 (12): 5899-906.

Duarte RS, Bellei BC, Miranda OP, Brito MA, Teixeira LM. Distribution of antimicrobial resistance and virulence-related genes among Brazilian group B streptococci recovered from bovine and human sources. Antimicrob. Agents Chemother, 2005; 49 (1): 97-103.

Duque CM, Gómez B, Sánchez DM, Uribe OL. Perfil de sensibilidad de S. agalactiae obtenido a partir de muestras de introito vaginal y región perineal de mujeres gestantes de Medellín (Colombia). Publicación Científica en Ciencias Biomédicas, 2011: 9 (15): 31-34.

Edmondson P. Blitz therapy for the eradication of Streptococcus agalactiae infections in dairy cattle. In Practice, 2011; 33 (1): 33-37.

Emaneini M, Jabalameli F, Mirsalehian A, Ghasemi A, Beigverdi R. Characterization of virulence factors, antimicrobial resistance pattern and clonal complexes of group B streptococci isolated from neonates. Microbial Pathogenesis, 2016; 99: 119-122.

Emaneini M, Mirsalehian A, Beigvierdi R, Fooladi A., Asadi F, Jabalameli F, Taherikalani M. High incidence of macrolide and tetracycline resistance among Streptococcus agalactiae strains isolated from clnical samples in Tehran, Iran. Journal of Clinical Medicine, 2014; 9 (2): 157-161.

FDA. Food and Drougs Administration task force on antimicrobial resistance: key recommendations and report. 2000.

Fleming SA. Penicillin. Nobel Lectures, Physiology or Medicine 1942-1962, 1945: p. 83-93.

Gao J, Yu FQ, Luo LP, He JZ, Hou RG, Zhang HQ, Li SM, Su JL, Han B. Antibiotic resistance of Streptococcus agalactiae from cows with mastitis. Vet J, 2012; 194 (3): 423-4.

García D, Mojica ME, Méndez I, Pachón D, Prieto A, Santamaría E, Calixto O, Murcia C, Palmera H. Prevalencia del Streptococcus agalactiae en maternas usuarias del Hospital Militar Central, Bogotá (Colombia), año 2010. Revista Colombiana de Obstetricia y Ginecología 2011; 62 (4): 302-307.

Grebe T, Hakenbeck R. Penicillin-binding proteins 2b and 2x of Streptococcus pneumoniae are primary resistance determinants for different classes of beta-lactam antibiotics. Antimicrobial agents and chemotherapy, 1996; 40 (4): 829-834.

Haenni M, Saras E, Bertin S, Leblond P, Madec JY, Payot S. Diversity and mobility of integrative and conjugative elements in bovine isolates of Streptococcus agalactiae, S. dysgalactiae subsp. dysgalactiae, and S. uberis. Appl Environ Microbiol, 2010; 76 (24): 7957-65.

Hakenbeck R. Resistance to b-lactam antibiotics in bacteroides. Journal of medical microbiology, 1995; 46 (April 1997): 979-986.

Hansen SM, Uldbjerg N, Kilian M, Sorensen UB. Dynamics of Streptococcus agalactiae colonization in women during and after pregnancy and in their infants. J. Clin. Microbiol., 2004; 42 (1): 83-9.

Hayes K, Cotter L, Barry L, O'Halloran F. Emergence of the L phenotype in Group B Streptococci in the South of Ireland. Epidemiology and Infection, 2017; 145 (16): 3535-3542.

Henriques Normark BA, Normark S. Evolution and spread of antibiotic resistance. Journal of Internal Medicine, 2002; 252 (2): 91-106.

Hernando-Amado S, Blanco P, Alcalde-Rico M, Corona F, Reales-Calderón JA, Sánchez MB, Martínez JL. Multidrug efflux pumps as main players in intrinsic and acquired resistance to antimicrobials. Drug Resistance Updates, 2016; 28 (2016): 13-27.

Hollenbeck BL, Rice LB. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence, 2012; 3 (5): 421-433.

Ismail AQ, Yeates DG, Marciano A, Goldacre M, Anthony M. Cow's milk and the emergence of group B streptococcal disease in newborn babies. Neonatology, 2011; 100 (4): 404-8.

Jaramillo-Jaramillo A, Lasso-Rojas L, Cobo-Ángel C, Moreno-Tolosa Y, Zadoks R, Sánchez J, Rodriguez-Lecompte J, Ceballos-Márquez A. Erythromycin Resistance of Streptococcus agalactiae Isolated from Bovine Milk in Colombia. in 57th NMC Annual Meeting. 2018. Tucson: National Mastitis Council.

Jaramillo-Jaramillo AS, Moreno Tolosa Y, Cobo-Ángel C, Ceballos Márquez A. Presencia de genes de resistencia a antibióticos en aislamientos de Streptococcus agalactiae de lecherías de Manizales y Villamaría, Caldas (Colombia). Revista Colombiana de Ciencias Pecuarias, 2017; 30 (Supl): 92.

Kaczorek E, Małaczewska J, Wójcik R, Rękawek W, Siwicki AK. Phenotypic and genotypic antimicrobial susceptibility pattern of Streptococcus spp. isolated from cases of clinical mastitis in dairy cattle in Poland. Journal of Dairy Science, 2017; 100 (8): 6442-6453.

Keefe G. Update on control of Staphylococcus aureus and Streptococcus agalactiae for management of mastitis. Vet. Clin. North Am.: Food. Anim. Pract., 2012; 28 (2): 203-16.

Keefe GP, Chaffer M, Ceballos A, Jaramillo M, Londoño M, Toro M, Montoya MI. Prevalence of Streptococcus agalactiae in cooling tanks of Colanta. in VI Seminario Internacional en Competitividad en Carne y Leche. 2010. Medellín, Colombia: Colanta.

Kimura K, Suzuki S, Wachino J, Kurokawa H, Yamane K, Shibata N, Nagano N, Kato H, Shibayama H, Arakawa Y. First molecular characterization of group B streptococci with reduced penicillin susceptibility. Antimicrob. Agents Chemother., 2008; 52 (8): 2890-7.

Lancefield RC. A serological differentiation of human and other groups of hemolytic streptococci. J. Exp. Med., 1933; 57 (4): 571-95.

LaRock CN, Nizet V. Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2015.

Leclercq R. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clinical Infectious Diseases, 2002; 34 (1537-6591 (Electronic)): 482-492 p.

Leszczyński P, Sokół-Leszczyńska B, Pietrzak B, Sawicka-Grzelak A, Wielgoś M. Erythromycin or Clindamycin - is it Still an Empirical Therapy against Streptococcus agalactiae in Patients Allergic to Penicillin? Polish journal of microbiology, 2017; 66 (2): 265-268.

Lowbury EJL, Hurst L. The sensitivity of Staphylococci and other wound bacteria to erythromycin, oleandomycin and Spiramycin. Journal of clinical pathology, 1959; 12 (2): 163-169.

Luna VA, Coates P, Eady EA, Cove JH, Nguyen TTH, Roberts MC. A variety of Gram-positive bacteria carry mobile mef genes. Journal of Antimicrobial Chemotherapy, 1999; 44 (1): 19-25.

Manning SD, Neighbors K, Tallman PA, Gillespie B, Marrs CF, Borchardt SM, Baker CJ, Pearlman MD, Foxman B. Prevalence of group B Streptococcus colonization and potential for transmission by casual contact in healthy young men and women. Clin. Infect. Dis., 2004; 39 (3): 380-8.

Molto-Garcia B, Liebana-Martos M, Cuadros-Moronta E, Rodriguez-Granger J, Sampedro-Martinez A, Rosa-Fraile M, Gutierrez-Fernandez J, Puertas-Priet A, Navarro-Mari JM. Molecular characterization and antimicrobial susceptibility of hemolytic Streptococcus agalactiae from post-menopausal women. Maturitas, 2016; 85: 5-10.

Money D, Allen VM. Prevention of early-onset neonatal group B streptococcal disease. Reviews in obstetrics & gynecology, 2013; 6 (2): 63-8.

Mousavi SM, Nasaj M, Hosseini SM, Arabestani MR. Survey of strain distribution and antibiotic resistance pattern of group B streptococci (Streptococcus agalactiae) isolated from clinical specimens. GMS hygiene and infection control, 2016; 11 (M): Doc18-Doc18.

Nagano N, Nagano Y, Toyama M, Kimura K, Shibayama K, Arakawa Y. Penicillin-susceptible group B streptococcal clinical isolates with reduced cephalosporin susceptibility. Journal of Clinical Microbiology, 2014; 52 (9): 3406-3410.

Nagano N, Nagano Y, Toyama M, Kimura K, Tamura T, Shibayama K, Arakawa Y. Nosocomial spread of multidrug-resistant group B streptococci with reduced penicillin susceptibility belonging to clonal complex 1. Journal of Antimicrobial Chemotherapy, 2012; 67 (4): 849-856.

Oliveira L, Madureira P, Andrade EB, Bouaboud A, Morello E, Ferreira P, Poyart C, Trieu-Cuot P, Dramsi S. Group B streptococcus GAPDH is released upon cell lysis, associates with bacterial surface, and induces apoptosis in murine macrophages. PLoS One, 2012; 7 (1): e29963.

Oliveira R, Aires T. Resistência aos antibacterianos. Gazeta Médica, 2016; 3: 14-21.

OMS, OMdl. Salud. Manual de laboratorio para la identificación y prueba de susceptibilidad a los antimicrobianos de patógenos bacterianos de importancia para la salud pública en el mundo en desarrollo. 2004. 410-410 p.

Oviedo P, Pegels E, Laczeski M, Quiroga M, Vergara M. Phenotypic and genotypic characterization of Streptococcus agalactiae in pregnant women. First study in a province of Argentina. Brazilian Journal of Microbiology, 2013; 44 (1): 253-258.

Phares CR, Lynfield R, Farley MM, Mohle-Boetani J, Harrison LH, Petit S, Craig AS, Schaffner W, Zansky SM, Gershman K, Stefonek KR, Albanese BA, Zell ER, Schuchat A, Schrag SJ. Epidemiology of invasive group B streptococcal disease in the United States, 1999-2005. JAMA, 2008; 299 (17): 2056-65.

Pinto TC, Costa NS, Vianna Souza AR, Silva LG, Correa AB, Fernandes FG, Oliveira IC, Mattos MC, Rosado AS, Benchetrit LC. Distribution of serotypes and evaluation of antimicrobial susceptibility among human and bovine Streptococcus agalactiae strains isolated in Brazil between 1980 and 2006. Braz J Infect Dis, 2013; 17 (2): 131-6.

Poole K. Mechanisms of bacterial biocide and antibiotic resistance. Journal of Applied Microbiology, 2002; 92 (Levy 2000): 55S-64S.

Poyart C, Jardy L, Quesne G, Berche P, Trieu-cuot P. Genetic Basis of Antibiotic Resistance in Streptococcus agalactiae Strains Isolated in a French Hospital. Antimicrobial agents and chemotherapy, 2003. 47(2): p. 794-797.

Poyart C, Pellegrini E, Marceau M, Baptista M, Jaubert F, Lamy MC, Trieu-Cuot P. Attenuated virulence of Streptococcus agalactiae deficient in D-alanyl-lipoteichoic acid is due to an increased susceptibility to defensins and phagocytic cells. Mol Microbiol, 2003; 49 (6): 1615-25.

Pyatov V, Vrtková I, Knoll A. Detection of selected antibiotic resistance genes using multiplex PCR assay in mastitis pathogens in the Czech Republic. Acta Veterinaria Brno, 2017; 86 (2): 167-174.

Ramírez N, Gaviria G, Arroyave O, Sierra B, Benjumea J. Prevalencia de mastitis en vacas lecheras lactantes en el municipio de San Pedro de los Milagros, Antioquia. Revista Colombiana de Ciencias Pecuarias, 2001; 14 (1): 76-87.

Rato MG, Bexiga R, Florindo C, Cavaco LM, Vilela CL, Santos-Sanches I. Antimicrobial resistance and molecular epidemiology of streptococci from bovine mastitis. Vet. Microbiol., 2013; 161 (3-4): 286-94.

Roberts MC, Sutcliffe J, Courvalin P, Jensen LB, Rood J, Seppala H. Nomenclature for macrolide and macrolide-lincosamide- streptogramin B resistance determinants. Antimicrobial agents and chemotherapy, 1999; 43 (12): 2823-2830.

Rojo-Bezares B, Azcona-Gutiérrez JM, Martin C, Jareño MS, Torres C, Sáenz Y. Streptococcus agalactiae from pregnant women: Antibiotic and heavy-metal resistance mechanisms and molecular typing. Epidemiology and Infection, 2016; 144 (15): 3205-3214.

Ryan KJ, Ray CG. Sherris Medical Microbiology. An introduction to infectious diseases. Fourth Edi ed. 2004: McGraw-Hill. 173-258.

Saga T, Yamaguchi K. History of antimicrobial agents and resistant bacteria. Japan Medical Association Journal, 2009; 52 (2): 103-108.

Silva-Costa C, Ramirez M, Melo-Cristino J, Portuguese I. Group for the Study of Streptococcal. Declining macrolide resistance in Streptococcus pyogenes in Portugal (2007-13) was accompanied by continuous clonal changes. J Antimicrob Chemother, 2015; 70 (10): 2729-33.

Silva JRd, Castro GDAdC, Gonçalves MS, Custódio DAdC, Mian GF, Costa GMd, Costa GMd. In vitro antimicrobial susceptibility and genetic resistance determinants of Streptococcus agalactiae isolated from astitic cows in Brazilian dairy herds. Semina: Ciências Agrárias, 2017; 38 (4Supl1): 2581-2581.

Taylor DE, Chau A. Tetracycline resistance mediated by ribosomal protection. 1996; 40 (1): 1-5.

Teatero S, Ferrieri P, Martin I, Demczuk W, McGeer A, Fittipaldi N. Serotype Distribution, Population Structure, and Antimicrobial Resistance of Group B Streptococcus Strains Recovered from Colonized Pregnant Women. Journal of clinical microbiology, 2017; 55 (2): 412-422.

Tikofsky LL, Barlow JW, Santisteban C, Schukken YH. A comparison of antimicrobial susceptibility patterns for Staphylococcus aureus in organic and conventional dairy herds. Microb Drug Resist, 2003; 9 Suppl 1: S39-45.

Tomazi T, de Souza Filho A, Gomes Alves S, Freu G, Heinemann M, Veiga dos Santos M, Gonçalves J. Genotypic Diversity and Antimicrobial Susceptibility of Streptococcus agalactiae Causing Clinical Mastitis. in 57th NMC Annual Meeting. 2018. Tucson.

Verani JR, McGee L, Schrag SJ. Prevention of perinatal group B streptococcal disease. Morbidity and mortality weekly report, 2010. p. 59.

Wang P, Ma Z, Tong J, Zhao R, Shi W, Yu S, Yao K, Zheng Y, Yang Y. Serotype distribution, antimicrobial resistance, and molecular characterization of invasive group B Streptococcus isolates recovered from Chinese neonates. Int J Infect Dis, 2015; 37: 115-8.


Texto completo: PDF

Licencia de Creative Commons

Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.