Atuação do Interferon-tau no reconhecimento materno da gestação

Flavia Caroline Destro, Julián Camilo Ochoa, Eduardo Trevisol, João Carlos Pinheiro Ferreira

Resumen


O reconhecimento materno da gestação é o processo pelo qual o concepto sinaliza sua presença à unidade materna, prolongando a vida do corpo lúteo (CL), determinando a manutenção da gestação. Esse processo que ocorre entre os dias 15 e 19 pós-fertilização, representa o desafio biológico mais importante para a obtenção de índices reprodutivos satisfatórios em bovinos. Nesta espécie, uma glicoproteína denominada Interferon-tau (IFN-τ), secretada pelo concepto no ambiente uterino, age de forma parácrina inibindo a expressão dos receptores de estrógenos (ESR1) e de ocitocina (OXTR) no endométrio, evitando a liberação de pulsos luteolíticos de prostaglandina F2 alfa (PGF2α), hormônio responsável pelo início da luteólise. O IFN-τ também aumenta a expressão de vários genes estimulados por interferons (ISGs) no útero, CL e em células sanguíneas. A ação endócrina direta do IFN-τ em tecidos extrauterinos estimula a expressão de ISGs, que no CL, parecem estar envolvidos com a resistência luteal à ação luteolítica da PGF2α. Portanto, esta revisão tem como objetivo discutir os achados recentes sobre o mecanismo de luteólise na espécie bovina, e a atuação parácrina e principalmente endócrina do IFN-τ, durante o período de reconhecimento materno da gestação.

Role of interferon-tau in the maternal recognition of pregnancy

Maternal recognition of pregnancy is a process by which the conceptus signals its presence to the mother in order to prolong the life of the corpus luteum (CL) thus maintaining the pregnancy. This process occurs between days 15 and 19 after fertilization and is the most important biological challenge for obtaining satisfactory reproductive indices in bovine. Interferon-tau (IFN-τ) glycoprotein -secreted in the uterus by the conceptus- has a paracrine action
inhibiting the expression of estrogen receptors (ESR1) and oxytocin (OXTR) in the endometrium, thus preventing the release of luteolytic pulses of prostaglandin F2 alpha (PGF2α), hormone responsible for the onset of luteolysis. IFN-τ also increases the expression of several interferon-stimulated genes (ISGs) in the uterus, CL, and blood cells. Direct endocrine action of IFN-τ on extrauterine tissues stimulates ISGs expression, which in the corpus luteum seems to be involved with luteal resistance to luteolytic action of PGF2α. This review discusses recent findings on
the luteolysis mechanism in the bovine and endocrine and paracrine mechanisms such as IFN-τ during the maternal
recognition of pregnancy.

Papel del interferón tau en el reconocimiento materno de la gestación

El reconocimiento materno de la gestación es un proceso mediante el cual el concepto señaliza su presencia a la madre, prolongando la vida del cuerpo lúteo (CL), determinando el mantenimiento de la gestación. Este proceso que ocurre entre los días 15 y 19 después de la fertilización, representa el desafio biológico más importante para la obtención de índices reproductivos satisfactorios en bovinos. En esta especie, una glicoproteína denominada Interferon-tau (IFN-τ), es secretada por el concepto en el ambiente uterino, actúa de forma parácrina inhibiendo la expresión de los receptores de estrógenos (ESR1) y de oxitocina (OXTR) en el endometrio evitando la liberación de pulsos luteoliticos de prostaglandina F2 alfa (PGF2α), hormona responsable por el inicio de la luteólisis. El IFN-τ también aumenta la expresión de varios genes estimulados por interferon (ISGs) en el útero, CL y en las células sanguíneas. La acción endocrina directa del IFN-τ en tejidos extrauterinos estimula la expresión de ISGs, que en el cuerpo lúteo parece estar involucrados con la resistencia luteal a la acción luteolitica de la PGF2α. Por lo tanto esta revisión tiene como objetivo discutir los hallazgos recientes sobre el mecanismo de luteólisis en la especie bovina, así como el mecanismo paracrino y principalmente endocrino del IFN-τ durante el período de reconocimiento materno de la gestación.

 


Palabras clave


Acción endocrina, acción paracrina, cuerpo lúteo, luteólisis.

Citas


Antoniazzi AQ, Henkes LE, Oliveira JFC, Hansen TR.

Função do interferon-tau durante o reconhecimento

materno da gestação em ruminantes. Ciênc. Rural

; 41:176-185.

Antoniazzi AQ, Webb BT, Romero JJ, Ashley RL,

Smirnova NP, et al. Endocrine Delivery of Interferon

Tau Protects the Corpus Luteum from Prostaglandin

F2 Alpha-Induced Luteolysis in Ewes. Biol reprod

, 88(6):144, 1–12.

Araujo RR, Ginther OJ, Ferreira JC, Palhão MM,

Beg MA, et al. Role of Follicular Estradiol-17 beta

in Timing of Luteolysis in Heifers. Biol reprod 2009,

:426-347.

Arosh JA, Banu SK, Chapdelaine P, Madore E, Sirois

J, et al. Prostaglandin biosynthesis, transport, and

signaling in corpus luteum: a basis for autoregulation

of luteal function. Endocrinology 2004; 145(5):

-2560.

Asselin E, Drolet P, Fortier MA. Cellular mechanisms

involved during oxytocin-induced prostaglandin F2

production in endometrial epithelial cells in vitro:

role of cyclooxygenase-2. Endocrinology 1997; 138:

–4805.

Asselin E, Drolet P, Fortier MA. In vitro response

to oxytocin and interferon- in bovine endometrial

cells from caruncular and inter-caruncular areas. Biol

Reprod 1998; 59: 241–247.

Atli MO, Bender RW, Mehta V, Bastos MR, Luo W,

et al. Patterns of gene expression in the bovine corpus

luteum following repeated intrauterine infusions of

low doses of prostaglandin F2alpha. Biol Reprod

; 86: 130.

Beard AP, Lamming GE. Oestradiol concentration

and the development of the uterine oxytocin receptor

and oxytocin-induced PGF release in ewes. J Reprod

Fertil 1994; 100: 469-475.

Binelli M, Thatcher WW, Mattos R, Baruselli PS.

Antiluteolytic strategies to improve fertility in cattle.

Theriogenology 2001; 56: 1451–1463.

Bott RC, Ashley RL, Henkes LE, Antoniazzi

AQ, Bruemmer JE, et al. Uterine vein infusion of

interferon tau (IFNT) extends luteal life span in ewes.

Biol Reprod. 2010; 82: 725-735.

Davis JS, Rueda BR. The corpus luteum: an ovarian

structure with maternal instincts and suicidal

tendencies. Frontiers in bioscience: a journal and

virtual library 2002; 7: 1949-1978.

Ealy AD, Larson SF, Liu L, Alexenko AP, Winkelman

GL, et al. Polymorphic forms of expressed bovine

interferon-tau genes: relative transcript abundance

during early placental development, promoter

sequences of genes and biological activity of protein

products. Endocrinology 2001;142: 2906-15.

Fleming JG, Spencer TE, Safe SH, Bazer FW.

Estrogen Regulates Transcription of the Ovine

Oxytocin Receptor Gene through GC-Rich SP1

Promoter Elements. Endocrinology 2006; 147: 899-

Fukui H, Fujimoto K, Mizuguchi H, Sakamoto K,

Horio Y, et al. Molecular cloning and expression of a

cDNA of the bovine prostaglandin F2 alpha receptor.

J Biol Chem 1994; 269: 3881-3886.

Gimpl G, Fahrenholz F. The oxytocin receptor

system: structure, function, and regulation. Physiol

Rev 2001; 81: 629–683.

Ginther OJ. Internal regulation of physiological

prosses through venoarterial pathways, a review. J.

Anim. Sci. 1974;. 39:550-564.

Ginther OJ, Knopf L, Kastelic JP. Temporal

associations among ovarian events in cattle during

estrous cycles with two and three follicular waves. J

Reprod Fertil 1989; 87: 223–230.

Ginther OJ, Araujo RR, Palhao MP, Rodrigues

BL, Beg MA. Necessity of sequential pulses of

prostaglandin F2alpha for complete physiologic

luteolysis in cattle. Biol Reprod 2009; 80: 641–648.

Ginther OJ, Shrestha HK, Fuenzalida MJ,

Shahiduzzaman AKM, Beg MA, 2010: Characteristics

of pulses of 13,14-Dihydro-15-Keto-Prostaglandin

F2alpha before, during, and after spontaneous

luteolysis and temporal intrapulse relationships with

progesterone concentrations in cattle. Biol Reprod

, 1049–1056.

Green JC, Okamura CS, Poock SE, Lucy MC.

Measurement of interferon-tau (IFN-τ) stimulated

gene expression in blood leukocytes for pregnancy

diagnosis within 18–20 d after insemination in dairy

cattle. Anim Reprod Sci 2010; 121: 24–33.

Hansen TR, Henkes LK, Ashley RL, Bott RC,

Antoniazzi AQ, et al. Endocrine actions of interferontau

in ruminants. In: VII Reproduction in domestic

ruminants. 2010, Ancorage. Ancorage: Society of

reproduction and fertility; 2010.

Hayashi K, Acosta TJ, Berisha B, Kobayashi S,

Ohtani M, et al. Changes in prostaglandin secretion

by the regressing bovine corpus luteum. Prostag Oth

Lipid M 2003; 70: 339-349.

Hernández-Ledezma JJ, Sikes JD, Murphy CN,

Watson AJ, Schultz GA, et al. Expression of bovine

trophoblast interferon in conceptuses derived by in

vitro techniques. Biol Reprod 1992; 47: 374-80.

Hixon JE, Flint APF. Effects of luteolytic dose of

oestradiol benzoate on uterine oxytocin receptor

concentrations, phosphoinositide turnover and

prostaglandin F-2a secretion in sheep. J Reprod Fertil

; 78: 457-467.

Homanics GE, Silvia WJ. Effects of progesterone and

estradiol-17P on uterine secretion of prostaglandin

F2α in response to oxytocin in ovariectomized ewes.

Biol Reprod 1988; 38: 804-811.

Ivell R, Fuchs AR, Bathgate R, Tillmann G, Kimura

T. Regulation of oxytocin receptor in bovine

reproductive tissues and the role of steroids. Reprod

Domest Anim 2000; 35: 134–141.

Kerbler TL, Buhr, MM, Jordan LT, Leslie KE,

Walton JS. Relationship between maternal plasma

progesterone concentration and interferon-tau

synthesis by the conceptus in cattle. Theriogenology

; 47: 703-714.

Kindahl H, Edqvist LE, Bane A, Granstrom E.

Blood levels of progesterone and 15-keto-13,

-dihydroprostaglandin F2a during the normal

oestrous cycle and early pregnancy in heifers. Acta

Endocrinol 1976; 82:134–149.

Kindahl H, Edqvist LE, Granstrom E, Bane A. The

release of prostaglandin F2a as reflected by 15-keto-

, 14-dihydroprostaglandin F2a in the peripheral

circulation during normal luteolysis in heifers.

Prostaglandins 1976; 11:871–876.

Kindahl H, Edqvist LE, Granstrom E, Bane A.

Release of prostaglandin- F2 alpha as reflected by

- keto-13,14 - dihydroprostaglandin F2alpha in

Peripheral - circulation during normal luteolysis in

heifers. Prostaglandins 1976; 11:871–878.

Krishnaswamy N, Danyod G, Chapdelaine

P, Fortier MA. Oxytocin receptor down-regulation

is not necessary for reducing oxytocin-induced

prostaglandin F2α accumulation by interferon-τ in a

bovine endometrial epithelial cell line. Endocrinology

; 150: 897–905.

Lauderdale JW. ASAS centennial paper: contributions

in the Journal of Animal Science to the development

of protocols for breeding management of cattle

through synchronization of estrus and ovulation. J

Anim Sci 2009; 87: 801–812.

Loureiro, B, Block J, Favoreto MG, Carambula S,

Pennington KA, Ealy AD, et al. Consequences of

conceptus exposure to colony-stimulating factor 2 on

survival, elongation, interferon-t secretion, and gene

expression. Reproduction 2011a; 141: 617–624.

Martin I, Torres Neto R, Oba E, Buratini Jr. J, Binelli

M, et al. Immunohistochemical detection of receptors

for oestrogen and progesterone in endometrial glands

and stoma during the oestrous cycle in Nelore (Bos

Taurus indicus) cows. Reprod Domest Anim 2008;

(4): 415:421.

McCracken JA, Custer E, Lams JC. Luteolysis: a

neuroendocrine-mediated event. Physiol Rev 1999;

: 263-323.

Meyer MD, Hansen PJ, Thatcher WW, Drost M,

Badinga L, et al. Extension of corpus luteum lifespan

and reduction of uterine secretion of prostaglandin F2

alpha of cows in response to recombinant interferontau.

J Dairy Sci 1995; 78: 1921-1931.

Mondal M, Schilling B, Folger J, Steibel JP, Buchnick

H, et al. Deciphering the luteal transcriptome: potential

mechanisms mediating stage-specific luteolytic

response of the corpus luteum to prostaglandin F.

Physiol Genomics 2011; 43: 447–456.

Mullen MP, Elia G, Hilliard M, Parr MH, Diskin

MG, et al. Proteomic characterization of histotroph

during the preimplantation phase of the estrous cycle

in cattle. Journal of proteome research 2012, 11(5),

-3018.

Muñoz M, Corrales FJ, Caamaño JN, Díez C, Trigal

B, et al. Proteome of the Early Embryo−Maternal

Dialogue in the Cattle Uterus. J Proteome Res 2011; 11:

-766.

Niswender GD, Juengel JL, Silva PJ, Rollyson MK,

Mcintush EW. Mechanisms controlling the function

and life span of the corpus luteum. Physiol Rev.

; 80: 1-29.

Oliveira JF, Henkes LE, Ashley RL, Purcell SH,

Smirnova NP, Rao DN, et al. Expression of interferon

(IFN)-stimulated genes in extrauterine tissues during

early pregnancy in sheep in the consequence of

endocrine IFN-tau release from the uterine vein.

Endocrinology 2008; 149: 1252-1259.

Pate JL, Landis Keyes P. Immune cells in the corpus

luteum: friends or foes? Reproduction 2001;122:

–676.

Roberts RM, Chen Y, Ezashi T, Walker AM.

Interferons and the maternal-conceptus dialog in

mammals. Semin Cell Dev Biol 2008; 19: 170-177.

Robinson RS, Mann GE, Lamming GE, Whates DC.

Expression of oxytocin, oestrogen and progesterone

receptors in uterine biopsy samples throughout

the oestrous cycle and early pregnancy in cows.

Reproduction 2001; 122: 965-979

Rosenfeld CS, Han C, Alexenko AP, Spencer TE,

Roberts RM. Expression of Interferon Receptor

Subunits, IFNAR1 and IFNAR2, in the Ovine Uterus.

Biol Reprod. 2002; 67: 847–853.

Sakamoto K, Miwa K, Ezashi T, Okuda-Ashitaka

E, Okuda D, et al. Expression of mRNA encoding

the prostaglandin F2a receptor in bovine corpora

lutea throughout the oestrous cycle and pregnancy. J

Reprod Fertil 1995; 103: 99–105.

Santos JEP, Thatcher WW, Chebel RC, Cerri RLA,

Galvão KN. The effect of embryonic death rates

in cattle on the efficacy of estrus synchronization

programs. Anim Reprod Sci 2004; 82–83: 513–535.

Short RV. Implantation and the maternal recognition

of pregnancy. In: Ciba Foundation Symposium on

Foetal Autonomy; 1969, London; 1969. p. 2–26.

Silvia WJ, Lewis GS, McCracken JA, Thatcher

WW, Wilson L Jr. Hormonal regulation of uterine

secretion of prostaglandin F2 alpha during luteolysis

in ruminants. Biol Reprod 1991; 45:655–663.

Spencer TE, Bazer FW. Temporal and spatial

alterations in uterine estrogen receptor and

progesterone receptor gene expression during the

estrous cycle and early pregnancy in the ewe. Biol

Reprod 1995; 53: 1527-1543.

Spencer TE, Johnson G A, Bazer F W, Burghardt

RC, Palmarini M. Pregnancy recognition and

conceptus implantation in domestic ruminants:

roles of progesterone, interferons and endogenous

retroviruses. Reprod. Fertil. Dev. 2006, 19 (1), 65−78.

Wathes DC, Hamon M. Localization of oestradiol,

P4 and oxytocin receptors in the uterus during the

oestrus cycle and early pregnancy of the ewe. J

Endocrinol 1993; 138: 479–491.

Wathes DC, Lamming GE. The oxytocin receptor,

luteolysis and the maintenance of pregnancy. J

Reprod Fertil Suppl 1995; 49: 53-67.

Yang L, Wang XL, Wan PC, Zhang LY, Wu Y, et al.

Up-regulation of expression of interferon-stimulated

gene 15 in the bovine corpus luteum during early

pregnancy. J. Dairy Sci 2010; 93: 1000–1011.


Texto completo: PDF

Licencia de Creative Commons

Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.