Atuação do Interferon-tau no reconhecimento materno da gestação

Autores/as

  • Flavia Caroline Destro Universidade Estadual Paulista “Julio de Mesquita Filho”. Botucatu, São Paulo, Brasil.
  • Julián Camilo Ochoa Universidade Estadual Paulista “Julio de Mesquita Filho”. Botucatu, São Paulo, Brasil.
  • Eduardo Trevisol Universidade Estadual Paulista “Julio de Mesquita Filho”. Botucatu, São Paulo, Brasil.
  • João Carlos Pinheiro Ferreira Universidade Estadual Paulista “Julio de Mesquita Filho”. Botucatu, São Paulo, Brasil.

Resumen

O reconhecimento materno da gestação é o processo pelo qual o concepto sinaliza sua presença à unidade materna, prolongando a vida do corpo lúteo (CL), determinando a manutenção da gestação. Esse processo que ocorre entre os dias 15 e 19 pós-fertilização, representa o desafio biológico mais importante para a obtenção de índices reprodutivos satisfatórios em bovinos. Nesta espécie, uma glicoproteína denominada Interferon-tau (IFN-τ), secretada pelo concepto no ambiente uterino, age de forma parácrina inibindo a expressão dos receptores de estrógenos (ESR1) e de ocitocina (OXTR) no endométrio, evitando a liberação de pulsos luteolíticos de prostaglandina F2 alfa (PGF2α), hormônio responsável pelo início da luteólise. O IFN-τ também aumenta a expressão de vários genes estimulados por interferons (ISGs) no útero, CL e em células sanguíneas. A ação endócrina direta do IFN-τ em tecidos extrauterinos estimula a expressão de ISGs, que no CL, parecem estar envolvidos com a resistência luteal à ação luteolítica da PGF2α. Portanto, esta revisão tem como objetivo discutir os achados recentes sobre o mecanismo de luteólise na espécie bovina, e a atuação parácrina e principalmente endócrina do IFN-τ, durante o período de reconhecimento materno da gestação.

Role of interferon-tau in the maternal recognition of pregnancy

Maternal recognition of pregnancy is a process by which the conceptus signals its presence to the mother in order to prolong the life of the corpus luteum (CL) thus maintaining the pregnancy. This process occurs between days 15 and 19 after fertilization and is the most important biological challenge for obtaining satisfactory reproductive indices in bovine. Interferon-tau (IFN-τ) glycoprotein -secreted in the uterus by the conceptus- has a paracrine action
inhibiting the expression of estrogen receptors (ESR1) and oxytocin (OXTR) in the endometrium, thus preventing the release of luteolytic pulses of prostaglandin F2 alpha (PGF2α), hormone responsible for the onset of luteolysis. IFN-τ also increases the expression of several interferon-stimulated genes (ISGs) in the uterus, CL, and blood cells. Direct endocrine action of IFN-τ on extrauterine tissues stimulates ISGs expression, which in the corpus luteum seems to be involved with luteal resistance to luteolytic action of PGF2α. This review discusses recent findings on
the luteolysis mechanism in the bovine and endocrine and paracrine mechanisms such as IFN-τ during the maternal
recognition of pregnancy.

Papel del interferón tau en el reconocimiento materno de la gestación

El reconocimiento materno de la gestación es un proceso mediante el cual el concepto señaliza su presencia a la madre, prolongando la vida del cuerpo lúteo (CL), determinando el mantenimiento de la gestación. Este proceso que ocurre entre los días 15 y 19 después de la fertilización, representa el desafio biológico más importante para la obtención de índices reproductivos satisfactorios en bovinos. En esta especie, una glicoproteína denominada Interferon-tau (IFN-τ), es secretada por el concepto en el ambiente uterino, actúa de forma parácrina inhibiendo la expresión de los receptores de estrógenos (ESR1) y de oxitocina (OXTR) en el endometrio evitando la liberación de pulsos luteoliticos de prostaglandina F2 alfa (PGF2α), hormona responsable por el inicio de la luteólisis. El IFN-τ también aumenta la expresión de varios genes estimulados por interferon (ISGs) en el útero, CL y en las células sanguíneas. La acción endocrina directa del IFN-τ en tejidos extrauterinos estimula la expresión de ISGs, que en el cuerpo lúteo parece estar involucrados con la resistencia luteal a la acción luteolitica de la PGF2α. Por lo tanto esta revisión tiene como objetivo discutir los hallazgos recientes sobre el mecanismo de luteólisis en la especie bovina, así como el mecanismo paracrino y principalmente endocrino del IFN-τ durante el período de reconocimiento materno de la gestación.

 

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Flavia Caroline Destro, Universidade Estadual Paulista “Julio de Mesquita Filho”. Botucatu, São Paulo, Brasil.

Universidade Estadual Paulista “Julio de Mesquita Filho”. Botucatu, São
Paulo, Brasil.

Referencias bibliográficas

1. Antoniazzi AQ, Henkes LE, Oliveira JFC, Hansen TR.
Função do interferon-tau durante o reconhecimento
materno da gestação em ruminantes. Ciênc. Rural
2011; 41:176-185.
2. Antoniazzi AQ, Webb BT, Romero JJ, Ashley RL,
Smirnova NP, et al. Endocrine Delivery of Interferon
Tau Protects the Corpus Luteum from Prostaglandin
F2 Alpha-Induced Luteolysis in Ewes. Biol reprod
2013, 88(6):144, 1–12.
3. Araujo RR, Ginther OJ, Ferreira JC, Palhão MM,
Beg MA, et al. Role of Follicular Estradiol-17 beta
in Timing of Luteolysis in Heifers. Biol reprod 2009,
81:426-347.
4. Arosh JA, Banu SK, Chapdelaine P, Madore E, Sirois
J, et al. Prostaglandin biosynthesis, transport, and
signaling in corpus luteum: a basis for autoregulation
of luteal function. Endocrinology 2004; 145(5):
2551-2560.
5. Asselin E, Drolet P, Fortier MA. Cellular mechanisms
involved during oxytocin-induced prostaglandin F2
production in endometrial epithelial cells in vitro:
role of cyclooxygenase-2. Endocrinology 1997; 138:
4798–4805.
6. Asselin E, Drolet P, Fortier MA. In vitro response
to oxytocin and interferon- in bovine endometrial
cells from caruncular and inter-caruncular areas. Biol
Reprod 1998; 59: 241–247.
7. Atli MO, Bender RW, Mehta V, Bastos MR, Luo W,
et al. Patterns of gene expression in the bovine corpus
luteum following repeated intrauterine infusions of
low doses of prostaglandin F2alpha. Biol Reprod
2012; 86: 130.
8. Beard AP, Lamming GE. Oestradiol concentration
and the development of the uterine oxytocin receptor
and oxytocin-induced PGF release in ewes. J Reprod
Fertil 1994; 100: 469-475.
9. Binelli M, Thatcher WW, Mattos R, Baruselli PS.
Antiluteolytic strategies to improve fertility in cattle.
Theriogenology 2001; 56: 1451–1463.
10. Bott RC, Ashley RL, Henkes LE, Antoniazzi
AQ, Bruemmer JE, et al. Uterine vein infusion of
interferon tau (IFNT) extends luteal life span in ewes.
Biol Reprod. 2010; 82: 725-735.
11. Davis JS, Rueda BR. The corpus luteum: an ovarian
structure with maternal instincts and suicidal
tendencies. Frontiers in bioscience: a journal and
virtual library 2002; 7: 1949-1978.
12. Ealy AD, Larson SF, Liu L, Alexenko AP, Winkelman
GL, et al. Polymorphic forms of expressed bovine
interferon-tau genes: relative transcript abundance
during early placental development, promoter
sequences of genes and biological activity of protein
products. Endocrinology 2001;142: 2906-15.
13. Fleming JG, Spencer TE, Safe SH, Bazer FW.
Estrogen Regulates Transcription of the Ovine
Oxytocin Receptor Gene through GC-Rich SP1
Promoter Elements. Endocrinology 2006; 147: 899-
911.
14. Fukui H, Fujimoto K, Mizuguchi H, Sakamoto K,
Horio Y, et al. Molecular cloning and expression of a
cDNA of the bovine prostaglandin F2 alpha receptor.
J Biol Chem 1994; 269: 3881-3886.
15. Gimpl G, Fahrenholz F. The oxytocin receptor
system: structure, function, and regulation. Physiol
Rev 2001; 81: 629–683.
16. Ginther OJ. Internal regulation of physiological
prosses through venoarterial pathways, a review. J.
Anim. Sci. 1974;. 39:550-564.
17. Ginther OJ, Knopf L, Kastelic JP. Temporal
associations among ovarian events in cattle during
estrous cycles with two and three follicular waves. J
Reprod Fertil 1989; 87: 223–230.
18. Ginther OJ, Araujo RR, Palhao MP, Rodrigues
BL, Beg MA. Necessity of sequential pulses of
prostaglandin F2alpha for complete physiologic
luteolysis in cattle. Biol Reprod 2009; 80: 641–648.
19. Ginther OJ, Shrestha HK, Fuenzalida MJ,
Shahiduzzaman AKM, Beg MA, 2010: Characteristics
of pulses of 13,14-Dihydro-15-Keto-Prostaglandin
F2alpha before, during, and after spontaneous
luteolysis and temporal intrapulse relationships with
progesterone concentrations in cattle. Biol Reprod
82, 1049–1056.
20. Green JC, Okamura CS, Poock SE, Lucy MC.
Measurement of interferon-tau (IFN-τ) stimulated
gene expression in blood leukocytes for pregnancy
diagnosis within 18–20 d after insemination in dairy
cattle. Anim Reprod Sci 2010; 121: 24–33.
21. Hansen TR, Henkes LK, Ashley RL, Bott RC,
Antoniazzi AQ, et al. Endocrine actions of interferontau
in ruminants. In: VII Reproduction in domestic
ruminants. 2010, Ancorage. Ancorage: Society of
reproduction and fertility; 2010.
22. Hayashi K, Acosta TJ, Berisha B, Kobayashi S,
Ohtani M, et al. Changes in prostaglandin secretion
by the regressing bovine corpus luteum. Prostag Oth
Lipid M 2003; 70: 339-349.
23. Hernández-Ledezma JJ, Sikes JD, Murphy CN,
Watson AJ, Schultz GA, et al. Expression of bovine
trophoblast interferon in conceptuses derived by in
vitro techniques. Biol Reprod 1992; 47: 374-80.
24. Hixon JE, Flint APF. Effects of luteolytic dose of
oestradiol benzoate on uterine oxytocin receptor
concentrations, phosphoinositide turnover and
prostaglandin F-2a secretion in sheep. J Reprod Fertil
1987; 78: 457-467.
25. Homanics GE, Silvia WJ. Effects of progesterone and
estradiol-17P on uterine secretion of prostaglandin
F2α in response to oxytocin in ovariectomized ewes.
Biol Reprod 1988; 38: 804-811.
26. Ivell R, Fuchs AR, Bathgate R, Tillmann G, Kimura
T. Regulation of oxytocin receptor in bovine
reproductive tissues and the role of steroids. Reprod
Domest Anim 2000; 35: 134–141.
27. Kerbler TL, Buhr, MM, Jordan LT, Leslie KE,
Walton JS. Relationship between maternal plasma
progesterone concentration and interferon-tau
synthesis by the conceptus in cattle. Theriogenology
1997; 47: 703-714.
28. Kindahl H, Edqvist LE, Bane A, Granstrom E.
Blood levels of progesterone and 15-keto-13,
14-dihydroprostaglandin F2a during the normal
oestrous cycle and early pregnancy in heifers. Acta
Endocrinol 1976; 82:134–149.
29. Kindahl H, Edqvist LE, Granstrom E, Bane A. The
release of prostaglandin F2a as reflected by 15-keto-
13, 14-dihydroprostaglandin F2a in the peripheral
circulation during normal luteolysis in heifers.
Prostaglandins 1976; 11:871–876.
30. Kindahl H, Edqvist LE, Granstrom E, Bane A.
Release of prostaglandin- F2 alpha as reflected by
15 - keto-13,14 - dihydroprostaglandin F2alpha in
Peripheral - circulation during normal luteolysis in
heifers. Prostaglandins 1976; 11:871–878.
31. Krishnaswamy N, Danyod G, Chapdelaine
P, Fortier MA. Oxytocin receptor down-regulation
is not necessary for reducing oxytocin-induced
prostaglandin F2α accumulation by interferon-τ in a
bovine endometrial epithelial cell line. Endocrinology
2009; 150: 897–905.
32. Lauderdale JW. ASAS centennial paper: contributions
in the Journal of Animal Science to the development
of protocols for breeding management of cattle
through synchronization of estrus and ovulation. J
Anim Sci 2009; 87: 801–812.
33. Loureiro, B, Block J, Favoreto MG, Carambula S,
Pennington KA, Ealy AD, et al. Consequences of
conceptus exposure to colony-stimulating factor 2 on
survival, elongation, interferon-t secretion, and gene
expression. Reproduction 2011a; 141: 617–624.
34. Martin I, Torres Neto R, Oba E, Buratini Jr. J, Binelli
M, et al. Immunohistochemical detection of receptors
for oestrogen and progesterone in endometrial glands
and stoma during the oestrous cycle in Nelore (Bos
Taurus indicus) cows. Reprod Domest Anim 2008;
43(4): 415:421.
35. McCracken JA, Custer E, Lams JC. Luteolysis: a
neuroendocrine-mediated event. Physiol Rev 1999;
79: 263-323.
36. Meyer MD, Hansen PJ, Thatcher WW, Drost M,
Badinga L, et al. Extension of corpus luteum lifespan
and reduction of uterine secretion of prostaglandin F2
alpha of cows in response to recombinant interferontau.
J Dairy Sci 1995; 78: 1921-1931.
37. Mondal M, Schilling B, Folger J, Steibel JP, Buchnick
H, et al. Deciphering the luteal transcriptome: potential
mechanisms mediating stage-specific luteolytic
response of the corpus luteum to prostaglandin F.
Physiol Genomics 2011; 43: 447–456.
38. Mullen MP, Elia G, Hilliard M, Parr MH, Diskin
MG, et al. Proteomic characterization of histotroph
during the preimplantation phase of the estrous cycle
in cattle. Journal of proteome research 2012, 11(5),
3004-3018.
39. Muñoz M, Corrales FJ, Caamaño JN, Díez C, Trigal
B, et al. Proteome of the Early Embryo−Maternal
Dialogue in the Cattle Uterus. J Proteome Res 2011; 11:
751-766.
40. Niswender GD, Juengel JL, Silva PJ, Rollyson MK,
Mcintush EW. Mechanisms controlling the function
and life span of the corpus luteum. Physiol Rev.
2000; 80: 1-29.
41. Oliveira JF, Henkes LE, Ashley RL, Purcell SH,
Smirnova NP, Rao DN, et al. Expression of interferon
(IFN)-stimulated genes in extrauterine tissues during
early pregnancy in sheep in the consequence of
endocrine IFN-tau release from the uterine vein.
Endocrinology 2008; 149: 1252-1259.
42. Pate JL, Landis Keyes P. Immune cells in the corpus
luteum: friends or foes? Reproduction 2001;122:
665–676.
43. Roberts RM, Chen Y, Ezashi T, Walker AM.
Interferons and the maternal-conceptus dialog in
mammals. Semin Cell Dev Biol 2008; 19: 170-177.
44. Robinson RS, Mann GE, Lamming GE, Whates DC.
Expression of oxytocin, oestrogen and progesterone
receptors in uterine biopsy samples throughout
the oestrous cycle and early pregnancy in cows.
Reproduction 2001; 122: 965-979
45. Rosenfeld CS, Han C, Alexenko AP, Spencer TE,
Roberts RM. Expression of Interferon Receptor
Subunits, IFNAR1 and IFNAR2, in the Ovine Uterus.
Biol Reprod. 2002; 67: 847–853.
46. Sakamoto K, Miwa K, Ezashi T, Okuda-Ashitaka
E, Okuda D, et al. Expression of mRNA encoding
the prostaglandin F2a receptor in bovine corpora
lutea throughout the oestrous cycle and pregnancy. J
Reprod Fertil 1995; 103: 99–105.
47. Santos JEP, Thatcher WW, Chebel RC, Cerri RLA,
Galvão KN. The effect of embryonic death rates
in cattle on the efficacy of estrus synchronization
programs. Anim Reprod Sci 2004; 82–83: 513–535.
48. Short RV. Implantation and the maternal recognition
of pregnancy. In: Ciba Foundation Symposium on
Foetal Autonomy; 1969, London; 1969. p. 2–26.
49. Silvia WJ, Lewis GS, McCracken JA, Thatcher
WW, Wilson L Jr. Hormonal regulation of uterine
secretion of prostaglandin F2 alpha during luteolysis
in ruminants. Biol Reprod 1991; 45:655–663.
50. Spencer TE, Bazer FW. Temporal and spatial
alterations in uterine estrogen receptor and
progesterone receptor gene expression during the
estrous cycle and early pregnancy in the ewe. Biol
Reprod 1995; 53: 1527-1543.
51. Spencer TE, Johnson G A, Bazer F W, Burghardt
RC, Palmarini M. Pregnancy recognition and
conceptus implantation in domestic ruminants:
roles of progesterone, interferons and endogenous
retroviruses. Reprod. Fertil. Dev. 2006, 19 (1), 65−78.
52. Wathes DC, Hamon M. Localization of oestradiol,
P4 and oxytocin receptors in the uterus during the
oestrus cycle and early pregnancy of the ewe. J
Endocrinol 1993; 138: 479–491.
53. Wathes DC, Lamming GE. The oxytocin receptor,
luteolysis and the maintenance of pregnancy. J
Reprod Fertil Suppl 1995; 49: 53-67.
54. Yang L, Wang XL, Wan PC, Zhang LY, Wu Y, et al.
Up-regulation of expression of interferon-stimulated
gene 15 in the bovine corpus luteum during early
pregnancy. J. Dairy Sci 2010; 93: 1000–1011.

Descargas

Publicado

2014-12-16

Cómo citar

Destro, F. C., Ochoa, J. C., Trevisol, E., & Pinheiro Ferreira, J. C. (2014). Atuação do Interferon-tau no reconhecimento materno da gestação. CES Medicina Veterinaria Y Zootecnia, 9(2), 338–347. Recuperado a partir de https://revistas.ces.edu.co/index.php/mvz/article/view/3183
Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas